

Computer Communications and Networks

For other titles published in this series, go to
www.springer.com/series/4198

http://www.springer.com/series/4198

The Computer Communications and Networks series is a range of textbooks, monographs
and handbooks. It sets out to provide students, researchers and non-specialists alike with
a sure grounding in current knowledge, together with comprehensible access to the latest
developments in computer communications and networking.

Emphasis is placed on clear and explanatory styles that support a tutorial approach, so that
even the most complex of topics is presented in a lucid and intelligible manner.

Massimo Cafaro � Giovanni Aloisio
Editors

Grids, Clouds
and Virtualization

Editors
Dr. Massimo Cafaro
Dipartimento di Ingegneria
dell’Innovazione
Università del Salento
Via per Monteroni
73100 Lecce
Italy
massimo.cafaro@unisalento.it

Prof. Giovanni Aloisio
Dipartimento di Ingegneria
dell’Innovazione
Università del Salento
Via per Monteroni
73100 Lecce
Italy
giovanni.aloisio@unisalento.it

Series Editor
Professor A.J. Sammes, BSc, MPhil, PhD,
FBCS, CEng
Centre for Forensic Computing
Cranfield University
DCMT, Shrivenham
Swindon SN6 8LA
UK

ISSN 1617-7975
ISBN 978-0-85729-048-9 e-ISBN 978-0-85729-049-6
DOI 10.1007/978-0-85729-049-6
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010936502

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:massimo.cafaro@unisalento.it
mailto:giovanni.aloisio@unisalento.it
http://www.springer.com
http://www.springer.com/mycopy

Preface

For more than a decade, the development of grid computing was driven by scientific
applications. The need to solve large-scale, increasingly complex problems moti-
vated research on grids systems. Many interesting problems have been solved with
the help of grids, for instance, the nug30 Quadratic Assignment Problem.

This challenging optimization problem was posed in 1968 and requires, given a
set of n facilities, a set of n locations, a distance specified for each pair of locations,
and a flow (weight) specified for each pair of facilities (e.g., the amount of supplies
transported between the two facilities), assigning all 30 facilities to the 30 different
locations with the goal of minimizing the sum of the distances multiplied by the
corresponding flows.

Despite its apparent simplicity, the problem is NP-Hard, and the number of possi-
ble assignments is extremely large, so that even if you could check a trillion assign-
ments per second, this process would take over 100 times the age of the universe.
However, once the algorithms and software necessary to tackle the previously un-
solved problem on a computational grid were developed, solving the problem re-
quired nearly a week, with a computational endeavor involving more than 1,000
computational resources working simultaneously at eight institutions geographi-
cally distributed in different parts of the world.

The FightAIDS@Home project, which is based on the volunteered computing
power of the World Community Grid, aims at testing candidate compounds against
the variations (or “mutants”) of HIV that can arise and cause drug resistance.

During November 2009, the project identified several fragments as new candi-
dates for a novel binding site on the peripheral surface of HIV protease. These
fragments docked well against the “exo site” and in vitro studies (i.e., “wet lab”
experiments in test tubes) will assess their potencies. If these wet lab experiments
produce promising results, then these fragments could form the foundation for the
development of “allosteric inhibitors” of HIV protease (i.e., “flexibility wedges”
that can disrupt the conformational changes that HIV protease must undergo in or-
der to function). These allosteric inhibitors could represent a totally new class of
anti-AIDS compounds.

These two examples clearly explain why scientists are now routinely supported
in their research by grid infrastructures. But what about business and casual users?

v

vi Preface

Although projects such as BEinGRID have reported some successful business ex-
periments that may profit from execution in grid environments, it appears that there
is not a general business case for the grid. However, recent advances in virtualiza-
tion techniques, coupled with the increased Internet bandwidth now available, led
in 2007 to the concept of cloud computing. The emergence of this new paradigm is
mainly based on its simplicity and the affordable price for seamless access to both
computational and storage resources.

Virtualization enables cloud computing, providing the ability to run legacy appli-
cations on older operating systems, creation of a single system image starting from
an heterogeneous collection of machines such as those traditionally found in grid
environments, and faster job migration within different virtual machines running
on the same hardware. For grid and cloud computing, virtualization is the key for
provisioning and fair resource allocation. From the security point of view, since vir-
tual machines run isolated in their sandboxes, this provides an additional protection
against malicious or faulty codes.

Clouds provide access to inexpensive hardware and storage resources through
very simple APIs, and are based on a pay-per-use model, so that renting these re-
sources is usually much cheaper than acquiring dedicated new ones. Moreover, peo-
ple are becoming comfortable with storing their data remotely in a cloud environ-
ment. Therefore, clouds are being increasingly used by scientists, small and medium
sized enterprises, and casual users.

Grids, clouds, and virtualization are exciting technologies that are going to be-
come prominent in the next few years; we expect a wide proliferation in their use,
especially clouds since these distributed computing facilities are already accessible
at a reasonable cost to many potential users. We also expect grids and clouds to play
an ever increasing role in the field of scientific research. It is therefore necessary a
thorough understanding of principles and techniques of these fields, and the main
aim of this book is to foster awareness of the essential ideas by exploring current
and future developments in the area.

The idea of writing this book dates back to the highly successful Grids, Clouds
and Virtualization Workshop that we organized in conjunction with the 4th Interna-
tional Conference on Grid and Pervasive Computing (GPC 2009) held in Geneva,
4–8 May 2009. We were contacted by Mr. Wayne Wheeler of Springer, and, after
an insightful discussion, we agreed to serve as the editors for the book. Indeed, it is
virtually impossible for a single person to write a book covering all of the important
aspects of grids, clouds, and virtualization while maintaining the required depth,
consistency, and appeal.

We invited many well-known and internationally recognized experts, asking
them to contribute their expertise. The book delves into details of grids, clouds,
and virtualization, guiding the reader through a collection of chapters dealing with
key topics. The bibliography rather than being exhaustive, covers essential reference
material. The aim is to avoid an encyclopedic approach since we believe that an at-
tempt to cover everything will instead fail to convey any useful information to the
interested readers, an audience including researchers actively involved in the field,
undergraduate and graduate students, system designers and programmers, and IT
policy makers.

Preface vii

The book may serve both as an introduction and as a technical reference. Our
desire and hope is that it will be useful to many people familiarizing with the subject
and will contribute to new advances in the field.

Massimo Cafaro
Giovanni Aloisio

Lecce, Italy

Acknowledgements

Every book requires months of preparations, and this book is no exception. We
would like to express our gratitude to the contributors for their participation in this
project. Without their technical expertise, patience, and efforts, this book would not
have been possible.

We are also indebted with the Springer editorial team for their cooperation efforts
that made this book a reality. In particular, we are deeply grateful to Mr. Wayne
Wheeler, Senior Editor, for his initial proposal and continuous encouragements. We
serve as the editors of this book owing to his incredible skills and energy. Special
thanks must also go to Mr. Simon Rees, Senior Editorial Assistant, for his dedica-
tion, support, and punctuality.

ix

Contents

1 Grids, Clouds, and Virtualization . 1
Massimo Cafaro and Giovanni Aloisio

2 Quality of Service for I/O Workloads in Multicore Virtualized
Servers . 23
J. Lakshmi and S.K. Nandy

3 Architectures for Enhancing Grid Infrastructures with Cloud
Computing . 55
Eduardo Huedo, Rafael Moreno-Vozmediano, Rubén S. Montero, and
Ignacio M. Llorente

4 Scientific Workflows in the Cloud . 71
Gideon Juve and Ewa Deelman

5 Auspice: Automatic Service Planning in Cloud/Grid Environments . 93
David Chiu and Gagan Agrawal

6 Parameter Sweep Job Submission to Clouds 123
P. Kacsuk, A. Marosi, M. Kozlovszky, S. Ács, and Z. Farkas

7 Energy Aware Clouds . 143
Anne-Cécile Orgerie, Marcos Dias de Assunção, and Laurent Lefèvre

8 Jungle Computing: Distributed Supercomputing Beyond Clusters,
Grids, and Clouds . 167
Frank J. Seinstra, Jason Maassen, Rob V. van Nieuwpoort, Niels Drost,
Timo van Kessel, Ben van Werkhoven, Jacopo Urbani, Ceriel Jacobs,
Thilo Kielmann, and Henri E. Bal

9 Application-Level Interoperability Across Grids and Clouds 199
Shantenu Jha, Andre Luckow, Andre Merzky, Miklos Erdely, and
Saurabh Sehgal

xi

xii Contents

Glossary . 231

Index . 233

Contributors

S. Ács MTA SZTAKI, P.O. Box 63, 1518 Budapest, Hungary, acs@sztaki.hu

Gagan Agrawal Department of Computer Science and Engineering, The Ohio
State University, Columbus, OH 43210, USA, agrawal@cse.ohio-state.edu

Giovanni Aloisio University of Salento, Lecce, Italy,
giovanni.aloisio@unisalento.it

Henri E. Bal Department of Computer Science, Vrije Universiteit, De Boelelaan
1081A, 1081 HV Amsterdam, The Netherlands, bal@cs.vu.nl

Massimo Cafaro Dipartimento di Ingegneria dell’Innovazione, Università del
Salento, Via per Monteroni, 73100 Lecce, Italy, massimo.cafaro@unisalento.it

David Chiu School of Engineering and Computer Science, Washington State Uni-
versity, Vancouver, WA 98686, USA, david.chiu@wsu.edu

Marcos Dias de Assunção INRIA, LIP Laboratory (UMR CNRS, INRIA, ENS,
UCB), University of Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France,
marcos.dias.de.assuncao@ens-lyon.fr

Ewa Deelman University of Southern California, Marina del Rey, CA, USA, deel-
man@isi.edu

Niels Drost Department of Computer Science, Vrije Universiteit, De Boelelaan
1081A, 1081 HV Amsterdam, The Netherlands, niels@cs.vu.nl

Miklos Erdely University of Pannonia, Veszprem, Hungary, erdelyim@gmail.com

Z. Farkas MTA SZTAKI, P.O. Box 63, 1518 Budapest, Hungary,
zfarkas@sztaki.hu

Eduardo Huedo Universidad Complutense de Madrid, 28040 Madrid, Spain,
ehuedo@fdi.ucm.es

Ceriel Jacobs Department of Computer Science, Vrije Universiteit, De Boelelaan
1081A, 1081 HV Amsterdam, The Netherlands, ceriel@cs.vu.nl

xiii

xiv Contributors

Shantenu Jha Louisiana State University, Baton Rouge, 70803, USA,
sjha@cct.lsu.edu

Gideon Juve University of Southern California, Marina del Rey, CA, USA,
juve@usc.edu

P. Kacsuk MTA SZTAKI, P.O. Box 63, 1518 Budapest, Hungary,
kacsuk@sztaki.hu

Thilo Kielmann Department of Computer Science, Vrije Universiteit, De Boele-
laan 1081A, 1081 HV Amsterdam, The Netherlands, kielmann@cs.vu.nl

M. Kozlovszky MTA SZTAKI, P.O. Box 63, 1518 Budapest, Hungary,
m.kozlovszky@sztaki.hu

J. Lakshmi SERC, Indian Institute of Science, Bangalore 560012, India, jlak-
shmi@serc.iisc.ernet.in

Laurent Lefèvre INRIA, LIP Laboratory (UMR CNRS, INRIA, ENS, UCB), Uni-
versity of Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France,
laurent.lefevre@inria.fr

Ignacio M. Llorente Universidad Complutense de Madrid, 28040 Madrid, Spain,
llorente@dacya.ucm.es

Andre Luckow Louisiana State University, Baton Rouge, 70803, USA,
aluckow@cct.lsu.edu

Jason Maassen Department of Computer Science, Vrije Universiteit, De Boelelaan
1081A, 1081 HV Amsterdam, The Netherlands, jason@cs.vu.nl

A. Marosi MTA SZTAKI, P.O. Box 63, 1518 Budapest, Hungary, atisu@sztaki.hu

Andre Merzky Louisiana State University, Baton Rouge, 70803, USA, an-
dre@merzky.net

Rubén S. Montero Universidad Complutense de Madrid, 28040 Madrid, Spain,
rubensm@dacya.ucm.es

Rafael Moreno-Vozmediano Universidad Complutense de Madrid, 28040 Madrid,
Spain, rmoreno@dacya.ucm.es

S.K. Nandy SERC, Indian Institute of Science, Bangalore 560012, India,
nandy@serc.iisc.ernet.in

Anne-Cécile Orgerie ENS Lyon, LIP Laboratory (UMR CNRS, INRIA, ENS,
UCB), University of Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France,
annececile.orgerie@ens-lyon.fr

A.J. Sammes, Centre for Forensic Computing, Cranfield University, DCMT,
Shrivenham, Swindon SN6 8LA, UK

Saurabh Sehgal Louisiana State University, Baton Rouge, 70803, USA

Contributors xv

Frank J. Seinstra Department of Computer Science, Vrije Universiteit, De Boele-
laan 1081A, 1081 HV Amsterdam, The Netherlands, fjseins@cs.vu.nl

Jacopo Urbani Department of Computer Science, Vrije Universiteit, De Boelelaan
1081A, 1081 HV Amsterdam, The Netherlands, jacopo@cs.vu.nl

Timo van Kessel Department of Computer Science, Vrije Universiteit, De Boele-
laan 1081A, 1081 HV Amsterdam, The Netherlands, timo@cs.vu.nl

Rob V. van Nieuwpoort Department of Computer Science, Vrije Universiteit, De
Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands, rob@cs.vu.nl

Ben van Werkhoven Department of Computer Science, Vrije Universiteit, De
Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands, ben@cs.vu.nl

Chapter 1
Grids, Clouds, and Virtualization

Massimo Cafaro and Giovanni Aloisio

Abstract This chapter introduces and puts in context Grids, Clouds, and Virtu-
alization. Grids promised to deliver computing power on demand. However, de-
spite a decade of active research, no viable commercial grid computing provider
has emerged. On the other hand, it is widely believed—especially in the Business
World—that HPC will eventually become a commodity. Just as some commercial
consumers of electricity have mission requirements that necessitate they generate
their own power, some consumers of computational resources will continue to need
to provision their own supercomputers. Clouds are a recent business-oriented de-
velopment with the potential to render this eventually as rare as organizations that
generate their own electricity today, even among institutions who currently consider
themselves the unassailable elite of the HPC business. Finally, Virtualization is one
of the key technologies enabling many different Clouds. We begin with a brief his-
tory in order to put them in context, and recall the basic principles and concepts
underlying and clearly differentiating them. A thorough overview and survey of ex-
isting technologies provides the basis to delve into details as the reader progresses
through the book.

1.1 Introduction

This chapter introduces and puts in context Grids, Clouds, and Virtualization [17].
Grids promised to deliver computing power on demand. However, despite a decade
of active research, no viable commercial grid computing provider has emerged. On
the other hand, it is widely believed—especially in the Business World—that HPC
will eventually become a commodity. Just as some commercial consumers of elec-
tricity have mission requirements that necessitate they generate their own power,

M. Cafaro (�) · G. Aloisio
University of Salento, Lecce, Italy
e-mail: massimo.cafaro@unisalento.it

G. Aloisio
e-mail: giovanni.aloisio@unisalento.it

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_1, © Springer-Verlag London Limited 2011

1

mailto:massimo.cafaro@unisalento.it
mailto:giovanni.aloisio@unisalento.it
http://dx.doi.org/10.1007/978-0-85729-049-6_1

2 M. Cafaro and G. Aloisio

some consumers of computational resources will continue to need to provision their
own supercomputers. Clouds are a recent business-oriented development with the
potential to render this eventually as rare as organizations that generate their own
electricity today, even among institutions who currently consider themselves the
unassailable elite of the HPC business. Finally, Virtualization is one of the key tech-
nologies enabling many different Clouds. We begin with a brief history in order to
put them in context, and recall the basic principles and concepts underlying and
clearly differentiating them. A thorough overview and survey of existing technolo-
gies and projects provides the basis to delve into details as the reader progresses
through the book.

1.2 A Bit of History

The history of Grids and Clouds may be traced back to the 1961 MIT Centennial,
when John McCarthy, a pioneer in mathematical theory of computation and artificial
intelligence and the inventor of the Lisp programming language, first exposed the
idea of utility computing: “. . . If computers of the kind I have advocated become
the computers of the future, then computing may someday be organized as a public
utility just as the telephone system is a public utility. . . The computer utility could
become the basis of a new and important industry.”

Indeed, owing to the huge costs and complexity of provisioning and maintaining
a data center, in the next two decades many large organizations (primarily banks)
rented computing power and storage provided by mainframe computers geographi-
cally spread in the data centers of IBM and other providers. Meanwhile, mini, micro,
and personal computers appeared on the market. During early 1980s, the majority
of the organizations acquired affordable personal computers and workstations. This
was perceived as the end of utility computing until the next decade.

In 1992, Charlie Catlett and Larry Smarr introduced the concept of metacom-
puting in their seminal paper [50]. The term metacomputing refers to computation
on a virtual supercomputer assembled connecting together different resources like
parallel supercomputers, data archives, storage systems, advanced visualization de-
vices, and scientific instruments using high-speed networks that link together these
geographically distributed resources. The main reason for doing so is because it en-
ables new classes of applications [14, 39] previously impossible and because it is
a cost-effective approach to high-performance computing. Metacomputing proved
to be feasible in several experiments and testbeds, including the I-WAY experiment
[19, 25] and in the Globus Gusto testbed [26].

The new applications were initially classified as follows:

• desktop supercomputing;
• smart instruments;
• collaborative environments;
• distributed supercomputing.

1 Grids, Clouds, and Virtualization 3

Desktop supercomputing included applications coupling high-end graphics ca-
pabilities with remote supercomputers and/or databases; smart instruments are sci-
entific instruments like microscopes, telescopes, and satellites requiring supercom-
puting power to process the data produced in near real time. In the class of collab-
orative environments there were applications in which users at different locations
could interact together working on a supercomputer simulation; distributed super-
computing finally was the class of applications requiring multiple supercomputers
to solve problems otherwise too large or whose execution was divided on different
components that could benefit from execution on different architectures.

The challenges to be faced before metacomputing could be really exploited were
identified as related to the following issues:

• scaling and selection;
• unpredictable structure;
• heterogeneity;
• dynamic behavior;
• multiple administrative domains.

Interestingly (from a research perspective), these are still relevant today. Scal-
ing is a concern, because we expect that grid and cloud environments in the future
will become even larger, and resources will be selected and acquired on the ba-
sis of criteria such as connectivity, cost, security, and reliability. These resources
will show different levels of heterogeneity, ranging from physical devices to system
software and schedulers policies; moreover, traditional high-performance applica-
tions are developed for a single supercomputer whose features are known a priori,
e.g., the latency of the interconnection network; in contrast, grid and cloud applica-
tions will run in a wide range of environments, thus making impossible to predict
the structure of the computation. Another concern is related to the dynamic be-
havior of the computation [51], since we cannot, in general, be assured that all of
the system characteristics stay the same during the course of computation, e.g., the
network bandwidth and latency can widely change, and there is the possibility of
both network and resource failure. Finally, since the computation will usually span
resources geographically spread at multiple administrative domains, there is not a
single authority in charge of the system, so that different scheduling policies and
authorization mechanisms must be taken into account.

In the same years, a middleware project called Legion [33] promoted the grid
object model. Legion was designed on the basis of common abstractions of the
object-oriented model: everything in Legion was an object with a well-defined set
of access method, including files, computing resources, storage, etc. The basic idea
was to expose the grid as a single, huge virtual machine with the aim of hiding the
underlying complexity to the user. The middleware proved to be useful in several
experiments, including a distributed run of an ocean model and task-farmed compu-
tational chemistry simulations. However, it became immediately apparent that the
majority of the people in academia were not fond of the grid object model; con-
sequently, the attention shifted toward the use of the Globus Toolkit, which a few
years later provided an alternative software stack and became quickly the de facto
standard for grid computing.

4 M. Cafaro and G. Aloisio

The Globus Toolkit, initially presented as a metacomputing environment [24],
was one of the first middleware solutions really designed to tackle the issues related
to large-scale distributed computing, and its usefulness in the context of metacom-
puting was demonstrated in the Gusto testbed; among the distributed simulations
that have been run using Globus, there was SF-Express [16], the largest computer
simulation of a military battle involving at the time more that 100,000 entities. Even
the EuropeanData Grid project, in charge of building a European middleware for
grid computing, did so leveraging many of the Globus components. These efforts
led to the gLite middleware [40], which is going to be used for the analysis of ex-
perimental results of the Large Hadron Collider, the particle accelerator at CERN
that recently started operations in Geneva. The middleware was also actively tested
in the context of the EGEE project [41], which provided the world largest computa-
tional grid testbed to date. Another European project developed a different middle-
ware, Unicore [21], targeting mainly HPC resources. A similar endeavor, devoted to
the implementation of grid middleware for high-performance computing, took place
in Japan starting in 2003 with the National Research Grid Initiative (NAREGI) [43]
and culminating in 2008 with the release of the middleware.

There was a pressure to grid-enable many existing legacy products. Among the
schedulers, we recall here Condor [52], Nimrod [10], Sun Grid Engine [30], and
Platform Computing LSF [56]. The Condor project begun in 1988 and is therefore
one of the earliest cycle scavenging software available. Designed for loosely coupled
jobs, and to cope with failures, it was ported to the grid through a Globus extension
aptly named Condor-G. The Nimrod system was designed to manage large param-
eter sweep jobs, in which the same executable was run each time with a different
input. Since the jobs are independent, a grid is clearly a good fit for this situation.
The Nimrod-G system, extended once again through the Globus Toolkit, was also
one of the earliest projects in which the concepts of grid economy appeared. In
addition to several other criteria, the user could also take into account the cost of
the whole simulation when submitting a job. The system was able to charge the
CPU cycles distinguishing HPC resources from traditional, off-the-shelf ones. Sun
Grid Engine, an open source project led by Sun, started in 2000. The software was
originally based on the Gridware Codine (COmputing in DIstributed Network En-
vironments) scheduler. It was grid-enabled and is now being cloud-enabled. Finally,
LSF was one the first commercial products offering support for grid environments
through its extension named LSF MultiCluster.

The business and commercial world recognized the impact and the potential of
grid computing, whose usefulness was demonstrated in hundreds of projects. How-
ever, almost all of the projects were driven by people involved in academia and tar-
geting mainly scientific applications. Very few projects, notably the BEinGrid [20]
one, were in charge of demonstrating the use of grid computing for business ori-
ented goals. BEinGrid, with its sample of 25 business experiments, was also suc-
cessful in the implementation and deployment of Grid solutions in industrial key
sectors. Nonetheless, grids are still not appealing to the business world, and this
is reflected in the lack of current commercial grid solutions. Platform Computing
provided years ago a version of the Globus Toolkit which is now unsupported and

1 Grids, Clouds, and Virtualization 5

not for sale. Legion was initially sold by Applied Meta, then by Avaki Corporation
which was acquired in 2005 by Sybase, Inc. What remains of the software is now
used by the company’s customers to share enterprise data. Entropia, Inc., a com-
pany founded in 1997, sold distributed computing software for CPU scavenging
until 2004.

The idea of harnessing idle CPUs worldwide was first exploited by the
SETI@home project [11], launched in 1996. Soon a number of related projects in-
cluding GIMPS [44], FightAIDS@Home [47], Folding@home [13] arose. GIMPS,
the Great Internet Mersenne Prime Search, was started in January 1996 to discover
new world-record-size Mersenne primes. A Mersenne prime is a prime of the form
2P −1. The first Mersenne primes are 3, 7, 31, 127 (corresponding to P = 2,3,5,7).
There are only 47 known Mersenne primes, and GIMPS has found 13 of the 47
Mersenne primes ever found during its 13-year history. FightAIDS@Home uses
distributed computing exploiting idle resources to accelerate research into new drug
therapies for HIV, the virus that causes AIDS; FightAIDS@Home made history in
September 2000 when it became the first biomedical Internet-based grid computing
project. Proteins, in order to carry out their function, must take on a particular shape,
also known as a fold. One of the Folding@home goals is to simulate protein folding
in order to understand how proteins fold so quickly and reliably, and to learn about
what happens when this process goes awry (when proteins misfold).

The initial release of the Apple Xgrid [35, 36] technology was also designed for
independent, embarrassingly parallel jobs, and was later extended to support tightly
coupled parallel MPI jobs. A key requirement of Xgrid was simplicity: everyone
is able to setup and use an hoc grid using Xgrid, not just scientists. However, only
Apple resources running the Mac OS X operating system may belong to this grid,
although third-party software (an Xgrid Linux agent and a Java-based one) not sup-
ported or endorsed by Apple allows deploying heterogeneous grids.

1.3 Grids

It is interesting to begin by reviewing some of most important definitions of grid
computing given during the course of research and development of the field. The
earliest definition given in 1998 by Foster and Kesselman [37] is focused around
on-demand access to computing, data, and services: a computational grid is a hard-
ware and software infrastructure that provides dependable, consistent, pervasive,
and inexpensive access to high-end computational capabilities. Two years later, the
definition was changed to reflect the fact that grid computing is concerned with coor-
dinated resource sharing and problem solving in dynamic, multi-institutional virtual
organizations. In the latest definitions of Foster [23, 27], a grid is described respec-
tively as an infrastructure for coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations and as a system that coordinates
resources that are not subject to centralized control, using standard, open, general-
purpose protocols and interfaces to deliver nontrivial qualities of service. We will

6 M. Cafaro and G. Aloisio

argue later, when comparing grids and clouds, that delivering nontrivial qualities of
service is very difficult using a distributed approach instead of a centralized one.

Grids are certainly an important computing paradigm for science, and there are
many different scientific communities facing large-scale problems simply too big
to be faced even on a single, powerful parallel supercomputer. After more than a
decade of active research and development in the field, all of the people expected
grids to become a commercial service; however, this has not happened yet. There-
fore, we ask ourselves: is there a general business case for grids?

To answer this question, we recall that it is now clear that grid computing bene-
fits specific classes of applications and that the technology itself, while powerful, is
probably not yet simple enough to be released commercially. This is reflected in the
following sentence of Frank Gillette, Forester: “None of us have figured out a simple
way to talk about (grid) . . . because it isn’t simple.” And, when something takes an
hour or more to be explained, it certainly cannot be sold easily. Therefore, applica-
tion providers may prefer to integrate the required middleware into their applications
or take advantage of existing Platform and DataSynapse solutions. The issue raised
by the complexity of grids proves to be a formidable barrier that we must overcome
if we want grids to become a fact of life that everyone uses and nobody notices. This
has been recently remarked in a position paper by Fox and Pierce [29] in which the
authors discuss the fact that “Grids meet Too much Computing, Too much Data and
never Too much Simplicity.”

On the other hand, early testbeds and recent grids deployment have clearly shown
the potential of grid computing. In particular, loosely coupled parallel applications,
parameter sweep studies and applications described by a workflow assembling and
orchestrating several different components are viable candidates for grid computing.
Example applications include those from the High Energy Physics (HEP) commu-
nity, falling in the parameter sweep class, and those from the bioinformatics commu-
nity, falling in the workflow class. Typical loosely coupled parallel applications are
exemplified by climate simulations, in which the initial functional decomposition
of the problem is well suited for execution on grids linking together distributed su-
percomputers; the blocks identified by the initial decomposition (atmosphere, land,
sea, ice, etc.) are then run on those supercomputers and exchange data infrequently.

When the vendors realized that this kind of applications were far beyond the
common needs of the majority of the people, the attention shifted to the emerging
field of cloud computing. Here, in contrast to grid computing, the emphasis was put
on simplicity as the ingredient to make clouds easily accessible.

1.4 Clouds

It is rather difficult to precisely define what clouds and cloud computing are, espe-
cially taking into account the many possible different uses. We recall here that the
same also happened in the context of grids. The concept as we all know it today
was introduced in late 2007 [54]. Among the many definitions that were given since
then, we report the following ones:

1 Grids, Clouds, and Virtualization 7

• Gartner: Cloud computing is a style of computing where massively scalable IT-
related capabilities are provided “as a service” across the Internet to multiple
external customers;

• Forrester: A pool of abstracted, highly scalable, and managed infrastructure ca-
pable of hosting end-customer applications and billed by consumption;

• IBM: An emerging computing paradigm where data and services reside in mas-
sively scalable data centers and can be ubiquitously accessed from any connected
devices over the internet.

How clouds are actually perceived by the people appears to be much broader
in scope. The following five definitions [48] expose several perspectives on this
subject.

1. Cloud computing refers (for many) to a variety of services available over the
Internet that deliver compute functionality on the service provider’s infrastruc-
ture (e.g., Google Apps, Amazon EC2, or Salesforce.com). A cloud computing
environment may actually be hosted on either a grid or utility computing envi-
ronment, but that does not matter to a service user;

2. • Cloud computing = Grid computing. The workload is sent to the IT infras-
tructure that consists of dispatching masters and working slave nodes. The
masters control resource distributions to the workload (how many slaves run
the parallelized workload). This is transparent to the client, who only sees that
workload has been dispatched to the cloud/grid and results are returned to it.
The slaves may or may not be virtual hosts;

• Cloud computing = Software-as-Service. This is the Google Apps model,
where apps are located “in the cloud,” i.e., somewhere in the Web;

• Cloud computing = Platform-as-Service. This is the Amazon EC2 et al.
model, where an external entity maintains the IT infrastructure (masters/
slaves), and the client buys time/resources on this infrastructure. This is “in
the cloud” in so much that it is across the Web, outside of the organization that
is leasing time off it;

3. The cloud simply refers to the move from local to service on the Web. From
storing files locally to storing them in secure scalable environments. From doing
apps that are limited to GB spaces to now apps that have no upper boundary,
from using Microsoft Office to using a Web-based office. Somewhere in 2005–
2008 storage online got cheaper and more secure than storing locally or on your
own server. This is the cloud. It encompasses grid computing, larger databases
like Bigtable, caching, always accessible, failover, redundant, scalable, and all
sorts of things. Think of it as a further move into the Internet. It also has large
implications for such battles as static vs. dynamic, RDBMS vs. BigTable and flat
data views. The whole structure of business that relies on IT infrastructure will
change, programmers will drive the cloud, and there will be lots of rich program-
mers at the end. It is like the move from mainframe to personal computers. Now
you have a personal space in the clouds;

4. Grid and Cloud are not exclusive of each other. . . Our customers view it this
way: Cloud is pay for usage (i.e., you do not necessarily own the resources), and

8 M. Cafaro and G. Aloisio

Grid is how to schedule the work, regardless where you run it. You can use a
cloud without a grid and a grid without a cloud. Or you can use a grid on a cloud;

5. I typically break up the idea of cloud computing into three camps:

• Enablers. These are companies that enable the underlying infrastructures or the
basic building blocks. These companies are typically focused on data center
automation and or server virtualization (VMware/EMC, Citrix, BladeLogic,
RedHat, Intel, Sun, IBM, Enomalism, etc.);

• Providers (Amazon Web Services, Rackspace, Google, Microsoft). The ones
with the budgets and know-how to build out global computing environments
costing millions or even billions of dollars. Cloud providers typically offer
their infrastructure or platform. Frequently, these As-a-Service offerings are
billed and consumed on a utility basis;

• Consumers. On the other side of the spectrum, I see the consumers compa-
nies that build or improve their Web applications on top of existing clouds of
computing capacity without the need to invest in data centers or any physical
infrastructure. Often these two groups can be one in the same such as Amazon
(SQS, SDB, etc.), Google (Apps), and Salesforce (Force). But they can also be
new startups that provide tools and services that sit on top of the cloud (Cloud
management).

Cloud consumers can be a fairly broad group including just about any application
that is provided via a Web-based service like a Webmail, blogs, social network,
etc. Cloud computing from the consumer point of view is becoming the only way
you build, host, and deploy a scalable Web application.

On the other hand, the main findings of the Cloud BoF held at OGF22, Cam-
bridge, MA, on 27 Feb 2008 were the following ones:

• Clouds are “Virtual Clusters” (“Virtual Grids”) of possibly “Virtual Machines”;
• They may cross administrative domains or may “just be a single cluster”; the user

cannot and does not want to know;
• Clouds support access (lease of) computer instances;
• Instances accept data and job descriptions (code) and return results that are data

and status flags;
• Each Cloud is a “Narrow” (perhaps internally proprietary) Grid;
• When does Cloud concept work:

– Parameter searches, LHC style data analysis, . . .
– Common case (most likely success case for clouds) versus corner case?

• Clouds can be built from Grids;
• Grids can be built from Clouds;
• Geoffrey Fox: difficult to compare grids and clouds because neither term has an

agreed definition;
• Unlike grids, clouds expose a simple, high-level interface;
• There are numerous technical issues:

– performance overhead, cost, security, computing model, data-compute affinity,
schedulers and QoS, link clouds (e.g., compute-data), . . . ;

1 Grids, Clouds, and Virtualization 9

– What happens when a cloud goes down? What about interoperability of clouds?
Standardization? Is it just another service?

A recent report [12] present an in-depth view of cloud computing. In what fol-
lows we will try to make things easier to understand, summarizing our perspective.
In order to do so, we begin discussing the main features and characteristics of clouds
as currently deployed and made available to the people. The main characteristic
of cloud computing certainly is its focus on virtualization. Clouds are succeeding
owing to the fact that the underlying infrastructure and physical location are fully
transparent to the user.

Beyond that, clouds also exhibit excellent scalability allowing users to run in-
creasingly complex applications and breaking the overall workload into manage-
able pieces served by the easily expandable cloud infrastructure. This flexibility is a
key ingredient, and it is very appealing to the users. Clouds can adapt dynamically
to both consumer and commercial workloads, providing efficient access through
a Service Oriented Architecture to a computing infrastructure delivering dynamic
provisioning of shared compute resources.

An attempt to provide a comprehensive comparison of grids and clouds is of
course available [28]. However, we now compare and contrast grids and clouds, in
order to highlight what we think are key differences. Grids are based on open stan-
dards; the standardization process happens in organizations such as the Open Grid
Forum, OASIS, etc. Clouds, in contrast, do not provide standardized interfaces. Es-
pecially commercial clouds solutions are based on proprietary protocols, which are
not disclosed to the scientific community. A related aspect is that of interoperabil-
ity. While in grid environments interoperability has become increasingly important,
and many efforts are devoted to this topic [15], clouds are not interoperable and will
not be in the short-term period. Vendors have no interest at the moment to provide
interoperability among their cloud infrastructures.

Almost all of the currently deployed grids have been publicly funded and op-
erated. This is of course a very slow process, when compared to clouds that are
instead privately funded and operated. Many companies have already invested and
continue to invest a huge amount of money to develop cloud technologies; however,
considering the limited amount of funding available to scientists, we must remark
the excellent results in the field of grid computing.

Examining how grids are operated, it is easy to see that, since the beginning,
there was a design requirement to build grid infrastructure tying together distributed
administrative domains, possibly geographically spread. On the contrary, clouds are
managed by a single company/entity/administrative domain. Everything is central-
ized, the infrastructure is hosted in a huge centre, and only the clients are actually
geographically distributed. The architecture is basically client–server.

We note here that, despite its simplicity, the client–server architecture is still
the most widely used in the commercial world, owing to the fact that it is very
hard to beat hosted/managed services with regard to performance and resiliency:
these services are currently geographically replicated and hugely provisioned and
can guarantee/meet a specific Service Level Agreement. Highly distributed archi-
tectures, including peer-to-peer systems, while in principle are theoretically more

10 M. Cafaro and G. Aloisio

resistant to threats such as Denial of Service attacks etc., still do not provide the
same performance guarantee. For instance, a P2P Google service is deemed to be
impossible [42] (although Google uses internally their own P2P system, based on
the concept of MapReduce [18]), and people who do it for business, today do not do
it peer-to-peer, with the notable exception of the Skype service [49].

Coming to the main purpose of grid and cloud systems, it is immediately evident
that for grid systems, the main raison d’etre is resource sharing. Cloud systems are
instead intended to provide seamless access to a huge, scalable infrastructure. Given
the different purpose they serve, it comes to no surprise that these systems target
different classes of applications. As we have already noted, grids are well suited
for scientific research and for the needs of high-end users. Clouds are mainly used
today for data analysis, information processing, and data mining.

We conclude this section recalling that Many Task Computing (MTC) and High
Throughput Computing (HTC) service providers and resource service providers can
benefit from the economies of scale that clouds can deliver [53], making this kind
of infrastructure appealing to the different stakeholders involved in.

1.5 Virtualization

The Virtual Machine (VM) concept [45] dates back to the 1960s; it was introduced
by IBM as a mean to provide concurrent, interactive access to their mainframe com-
puters. A VM was an instance of the physical machine and gave users the illusion
of accessing the physical machine directly. VMs were used to transparently enable
time-sharing and resource-sharing on the (at the time) highly expensive hardware.
Each VM was a fully protected and isolated copy of the underlying system. Virtu-
alization was thus used to reduce the hardware costs on one side and to improve the
overall productivity by letting many more users work on it simultaneously. However,
during the course of years, the hardware got cheaper and simultaneously multipro-
cessing operating systems emerged. As a consequence, VMs were almost extinct in
1970s and 1980s, but the emergence of wide varieties of PC-based hardware and
operating systems in 1990s revived virtualization ideas.

Virtualization technologies represent a key enabler of cloud computing, along
with the recent advent of Web 2.0 and the increased bandwidth availability on the
Internet. The most prominent feature is the ability to install multiple OS on different
virtual machines on the same physical machine. In turn, this provides the additional
benefits of overall cost reduction owing to the use of less hardware and consequently
less power. As a useful side effect, we also note here that virtualization generally
leads to increased machine utilization. The main aim of virtualization technologies
is to hide the physical characteristics of computing resources from the way in which
other systems, applications, or end users interact with those resources. In this book,
Lakshmi et al. [38] propose an end-to-end system virtualization architecture and
thoroughly analyze it.

Among the many benefits provided by virtualization, we recall the ability to run
legacy applications requiring an older platform and/or OS, the possibility of creating

1 Grids, Clouds, and Virtualization 11

a single system image starting from an heterogeneous collection of machines such
as those traditionally found in grid environments, and faster job migration within
different virtual machines running on the same hardware. For grid and cloud com-
puting, virtualization is the key for provisioning and fair resource allocation. From
the security point of view, since virtual machines run isolated in their sandboxes,
this provides an additional protection against malicious or faulty codes.

Besides computing, storage may be virtualized too. Through the aggregation of
multiple smaller storage devices characterized by attributes such as performance,
availability, capacity and cost/capacity, it becomes possible to present them as one
or more virtual storage devices exhibiting better performance, availability, capacity,
and cost/capacity properties. In turn, this clearly enhances the overall manageability
of storage and provides better sharing of storage resources.

A virtualization layer provides the required infrastructural support exploiting
lower-level hardware resources in order to create multiple independent virtual ma-
chines that are isolated from each other. This layer, traditionally called Virtual Ma-
chine Monitor (VMM), usually sits on top of the hardware and below the operating
system. Virtualization as an abstraction can take place at several different levels, in-
cluding instruction set level, Hardware Abstraction Layer (HAL), OS level (system
call interface), user-level library interface, and the application level.

Virtualizing the instruction set requires emulation of the instruction set, i.e., in-
terpreting the instructions in software. A notable example is Rosetta [9], which is a
lightweight dynamic translator for Mac OS X distributed by Apple. Its purpose is to
enable legacy applications compiled for the PowerPC family of processors to run on
current Apple systems that use Intel processors. Other examples include Bochs [1],
QEMU [2], and BIRD [46].

HAL level virtual machines are based on abstractions lying between a real ma-
chine and an emulator; in this case a virtual machine is an environment created and
managed by a VMM. While emulator’s functionalities provide a complete layer be-
tween the operating system or applications and the hardware, a VMM is in charge of
managing one or more VMs, and each VM in turn provides facilities to an OS or ap-
plication as if it is run in a normal environment, directly on the hardware. Examples
include VMware [3], Denali [55], Xen [4], Parallels [5], and Plex86 [6].

Abstracting virtualization at the OS level requires providing a virtualized system
call interface; this involves working on top of the OS or at least as an OS module.
Owing to the fact that system calls are the only way of communication from user-
space processes to kernel-space, the virtualization software can control user-space
processes by managing this system interface. Additionally, besides system’s library,
usually applications also link code provided by third-party user-level libraries. Vir-
tualizing this library interface can be done by controlling the communication link
between the applications and the rest of the system through well-defined API hooks.
Therefore, it is possible to expose a different implementation using the same set of
APIs. As an example, WINE HQ [7] and CrossOver [8] support running Windows
applications respectively on Unix and Mac OS X.

Virtualization at the application is not based on the insertion of a virtualization
layer in the middle. Instead, this kind of abstraction is implemented as an application

12 M. Cafaro and G. Aloisio

that eventually creates a virtual machine. The created VM could range in complexity
from a simple language interpreter to a very complex Java Virtual machine (JVM).

All of these virtualization technologies are based on approaches differing signif-
icantly when evaluated with regard to several metrics such as performance, flexibil-
ity, simplicity, resource consumption, and scalability. Therefore, it is important to
understand their usage scenarios as well. Instruction set emulators are often charac-
terized by very high latencies that make them impractical to use on a regular basis
(with the notable exception of Rosetta). Their main goal is to provide an environ-
ment especially tailored to debugging and learning purposes, since every component
is implemented in software and is fully under user’s control.

Commercial virtual machines operating at HAL level, besides offering extremely
low latencies, also give the flexibility of using different OSes or different versions
of the same OS on the same machine; these VMs present a complete machine in-
terface, but of course this demands a much higher amount of resources. OS level
virtual machines are useful in those cases in which this kind of flexibility is not
required, because resource requirements are much lower, performance better, and
manipulations (e.g., creation) faster. It is worth noting here that the attained level
of isolation is lower, since all of the VMs use the same kernel and can potentially
affect the whole system.

Finally, library-level virtualization technologies prove to be extremely light-
weight. On the contrary, application-level virtualization suffers from extra overhead
being in the application-level. The latter technology is increasingly applied in mo-
bile computing and as a building block for trusted computing infrastructures.

1.6 Technologies

In this section, we review the most important technologies available. We recall here
the following:

• Amazon Elastic Compute Cloud (EC2);
• Google App Engine;
• Hadoop;
• HP Labs Enterprise Cloud Assure and Cloud Software Platform (Cirious);
• IBM Smart Business cloud solutions;
• Sun Cloud;
• Oracle On Demand and Platform for SaaS;
• SGI Cyclone;
• Microsoft Azure.

The Amazon cloud is probably the most used cloud computing environment. It
works as follows. You start by creating an Amazon Machine Image (AMI) contain-
ing all your software, including your operating system and associated configuration
settings, applications, libraries, etc. Amazon provides all of the necessary tools to
create and package your AMI. Then, you upload this AMI to the cloud through
the Amazon S3 (Amazon Simple Storage Service) service. This provides reliable,

1 Grids, Clouds, and Virtualization 13

secure access to your AMI. In order to run your applications, you need to register
your AMI with Amazon EC2. This step allows verifying that your AMI has been
uploaded correctly and uniquely identifies it with an identifier called AMI ID. Using
the AMI ID and the Amazon EC2 web service APIs, it is easy to run, monitor, and
terminate as many instances of the AMI as required. Amazon provides command
line tools and Java libraries, and you may also take advantage of SOAP or Query
based APIs. Amazon also lets you launch preconfigured AMIs provided by Amazon
or shared by another user. While AMI instances are running, you are billed for the
computing and network resources that they consume.

Among the applications that have actually been run on EC2, we recall here web
hosting, parallel processing, graphics rendering, financial modeling, web crawling,
and genomics analysis. To be fair, while parallel applications can be run on the Ama-
zon cloud, performances are of course far from the current result you can achieve on
a dedicated supercomputing infrastructure, owing to less powerful CPUs and basic
interconnection networks with very high latency and low bandwidth when com-
pared to the high-end interconnects traditionally available on supercomputers. For
instance, a recent work [22] is related to deploying and running a coupled climate
simulation on EC2. The results obtained are comparable to running the simulation
on a low-cost beowulf cluster assembled using commodity, off-the-shelf hardware.

The Google App Engine exploits the underlying Google infrastructure, the same
that was built to bring access to their web search engine and Gmail to people world-
wide. Leveraging a powerful network of data centers, this infrastructure is aimed
at scalable web applications built using Python and, more recently, Java. Develop-
ers are assigned a free quota of 500 MB of storage and enough CPU and network
bandwidth to sustain around 5 million page views per month for a typical app; it is
possible to purchase additional storage and bandwidth to go beyond the limits. It is
worth noting here that Google provides proprietary APIs to take advantage of the
infrastructure, so that writing an application is considerably easier, but at the same
time, once a development team selects Google App Engine as the environment of
choice for their web application, they remain locked to the platform, because a move
will require significant code rewrites. The competing Amazon EC2 service is dif-
ferent, in that it allows developers to create virtual server instances and leaves them
the option of moving their applications easily to other machines.

Hadoop [34] is an open-source Apache Software Foundation project sponsored
by Yahoo! whose intent is to reproduce the proprietary software infrastructure de-
veloped by Google. It provides a parallel programming model, MapReduce, heavily
exploited by Google, a distributed file system, a parallel database, a data collection
system for managing large distributed systems, a data warehouse infrastructure that
provides data summarization and ad hoc querying, a high-level data-flow language
and execution framework for parallel computation, and a high-performance coordi-
nation service for distributed applications.

The software is widely used by many companies and researchers. As an example
of usage, we recall here the New York Times task of generating about 11 millions of
PDF files related to the public domain articles from 1851–1922 by gluing together
multiple TIFF images per article [31]. Derek Gottfried uploaded 4 TB of data to the

14 M. Cafaro and G. Aloisio

Amazon EC2 infrastructure using the S3 service, wrote the software to pull all the
parts that make up an article out of S3, generate a PDF from them, and store the PDF
back in S3 using open-source Java components, and finally he deployed Hadoop on
a cluster of EC2 machines. Overall, the whole task took less than 24 hours using
100 instances on Amazon EC2 and generated additional 1.5 TB of data to be stored
in S3.

Regarding the MapReduce programming model, it is a data-flow model between
services where services can do useful document-oriented data parallel applications
including reductions; using Hadoop, the decomposition of services onto cluster in
a clouds is fully automated. The key idea is inspired by some primitives of the
LISP programming language. Both the input and the output are key/value pairs, and
developers needs to implement two functions, map and reduce:

• map(in_key, in_value) → list(out_key, intermediate_value);
• reduce(out_key, list(intermediate_value)) → list(out_value).

The former processes an input key/value pair, producing a set of intermediate
pairs. The latter is in charge of combining all of the intermediate values related to a
particular key, outputting a set of merged output values (usually just one). MapRe-
duce is often explained illustrating a possible solution to the problem of counting
the number of occurrences of each word in a large collection of documents. The
following pseudocode refers to the functions that needs to be implemented.

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents
for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key,
Iterator intermediate_values):

// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate_values:

result += ParseInt(v);
Emit(AsString(result));

The map function emits in output each word together with an associated count of
occurrences (in this simple example just one). The reduce function provides the re-
quired result by summing all of the counts emitted for a specific word. MapReduce
implementations (Google App Engine and Hadoop for instance) then automatically
parallelize and execute the program on a large cluster of commodity machines. The
runtime system takes care of the details of partitioning the input data, scheduling
the program’s execution across a set of machines, handling machine failures, and
managing required intermachine communication. While MapReduce certainly lim-
its the scope of parallel applications that can be developed to a particular type of

1 Grids, Clouds, and Virtualization 15

interaction, it allows programmers with no previous experience with parallel and
distributed computing to easily utilize the resources of a large distributed system.
A typical MapReduce computation processes many terabytes of data on hundreds
or thousands of machines. Programmers find the model easy to use (and it certainly
is when compared to more advanced interactions among tasks), and more than 100K
MapReduce jobs are routinely executed on Google’s and Amazon’s clusters every
day.

1.7 The Economics

Grid Computing leverages the techniques of clustering where multiple independent
clusters act like a grid due to their nature of not being located in a single domain.
This leads to the data-compute affinity problem: because of the distributed nature of
the Grid, the computational nodes could be located anywhere in the world. It is fine
having all that CPU power available, but the data on which the CPU performs its
operations could be thousands of miles away, causing a delay (latency) between data
fetch and execution. CPUs need to be fed with different volumes of data depending
on the tasks they are processing. Running a data intensive process with disparate
data sources can create an I/O bottleneck causing the CPU to run inefficiently and
affecting economic viability. This also applies to clouds but, owing to the centralized
nature of cloud environments and to the requirements of cloud applications which
usually move a relatively scarce volume of data (with some exceptions), the problem
is far less critical. Storage management, security provisioning, and data movement
are the nuts to be cracked in order for grids to succeed; more important than these
technical limitations is becoming the lack of business buy in.

The nature of Grid/Cloud computing means that a business has to migrate its
application and data to a third-party solution. This creates huge barriers to the up-
take, at least initially. Financial business institutions need to know that grid vendors
understand their business, not just the portfolio of applications they ran and the in-
frastructure they ran upon. This is critical to them. They need to know that whoever
supports their systems knows exactly what the effect of any change could poten-
tially make to their shareholders. The other bridge that has to be crossed is that of
data security and confidentiality. For many businesses, their data is the most sensi-
tive, business critical thing they possess. To hand this over to a third-party is simply
not going to happen. Banks are happy to outsource part of their services but want
to be in control of the hardware and software—basically using the outsourcer as an
agency for staff.

Jim Gray (Turing Award in 1998, lost at sea in 2007) published in 2003 an in-
teresting paper on Distributed Computing Economics [32]. As stated in this 2003
paper, “Computing economics are changing. Today there is rough price parity be-
tween (1) one database access, (2) ten bytes of network traffic, (3) 100,000 instruc-
tions, (4) 10 bytes of disk storage, and (5) a megabyte of disk bandwidth. This has
implications for how one structures Internet-scale distributed computing: one puts

16 M. Cafaro and G. Aloisio

computing as close to the data as possible in order to avoid expensive network traf-
fic”. This is exactly the data-compute affinity problem that plagues Grids.

The recurrent theme of this analysis is that On-Demand computing is only eco-
nomical for very CPU-intensive (100,000 instructions per byte or a CPU-day-per
gigabyte of network traffic) applications. Preprovisioned computing is likely to be
more economical for most applications, especially data-intensive ones. If Internet
access prices drop faster than Moore’s law, the analysis fails. If instead Internet
access prices drop slower than Moore’s law, the analysis becomes even stronger.

What are the economic issues of moving a task from one computer to another or
from one place to another? A computation task has four characteristic demands:

• Networking—delivering questions and answers,
• Computation—transforming information to produce new information,
• Database Access—access to reference information needed by the computation,
• Database Storage—long-term storage of information (needed for later access).

The ratios among these quantities and their relative costs are pivotal: it is fine to
send a GB over the network if it saves years of computation, but it is not economic
to send a kilobyte question if the answer could be computed locally in a second.

1.7.1 The Economics in 2003

To make the economics tangible, take the following baseline hardware parameters:

1. 2-GHz CPU with 2-GB RAM (cabinet and networking);
2. 200-GB disk with 100 accesses/second and 50-MB/s transfer;
3. 1-Gbps Ethernet port-pair;
4. 1-Mbps WAN link.

From this Gray concludes that one dollar equates to

• 1 GB sent over the WAN;
• 10 Tops (tera cpu operations);
• 8 hours of CPU time;
• 1 GB disk space;
• 10 M database accesses;
• 10 TB of disk bandwidth;
• 10 TB of LAN bandwidth.

Let us now think about some of the implications and consequences. Beowulf
networking is 10,000× cheaper than WAN networking, and a factor of 105 matters.
Moreover, the cheapest and fastest way to move a Terabyte cross country is sneaker-
net (the transfer of electronic information, especially computer files, by physically
carrying removable media such as magnetic tape, compact discs, DVDs, USB flash
drives, or external drives from one computer to another): 24 hours = 4 MB/s, 50$
shipping vs 1,000$ WAN cost; a few real examples follow. Google has reportedly

1 Grids, Clouds, and Virtualization 17

used a sneakernet to transport datasets too large for current computer networks, up
to 120 TB in size. The SETI@home project uses a sneakernet to overcome band-
width limitations: data recorded by the radio telescope in Arecibo, Puerto Rico, is
stored on magnetic tapes which are then shipped to Berkeley, California, for pro-
cessing. In 2005, Jim Gray reported sending hard drives and even “metal boxes with
processors” to transport large amounts of data by postal mail.

The conclusions of Gray (http://research.microsoft.com/en-us/um/people/gray/
talks/WebServices_Grid.ppt) are that “To the extent that computational grid is like
Seti@Home or ZetaNet or Folding@home or. . . it is a great thing; The extent that
the computational grid is MPI or data analysis, it fails on economic grounds: move
the programs to the data, not the data to the programs. The Internet is NOT the cpu
backplane. The USG should not hide this economic fact from the academic/scientific
research community”.

1.7.2 The Economics in 2010

It is worth recalling here that when Jim Gray published his paper, the fastest Super-
computer operated at a speed of 36 TFLOPS; the fastest supercomputer available
today provides computing power in excess of 1.7 PFLOPS, and a new IBM Blue
Gene/Q is planned for 2010–2012, which will operate at 10 PFLOPS, practically
outstripping Moore’s law by a factor of 10. Internet access prices have fallen, and
bandwidth has increased since 2003, but more slowly than processing power. There-
fore, the economics are even worse than in 2003, and it follows that, at the moment,
there are too many issues and costs with network traffic and data movements to
allow Clouds to happen for all kinds of customers. The majority of routine tasks,
which are not processor intensive and time critical, are the most likely candidates
to be migrated to cloud computing, even though these may be the least economical
to be ported to that architecture. Among the many processor intensive applications,
a few selected applications such as image rendering or finite modelling appear to be
good candidate applications.

1.8 Applications

We now briefly consider what type of applications are best suited for execution on
grids and clouds respectively. The reader should take into account the issues we
discussed regarding the movement of both input and output data, especially regard-
ing large datasets. Traditional sequential batch jobs can be run without problems on
both grids and clouds.

Parallel jobs can be run without issues on a single parallel supercomputer or clus-
ter belonging to a grid; running them on clouds requires an initial effort to properly
setup the environment and is likely to achieve performances similar to those on a
self-made, assembled beowulf cluster using a low-cost interconnection network and
off-the-shelf components.

http://research.microsoft.com/en-us/um/people/gray/talks/WebServices_Grid.ppt
http://research.microsoft.com/en-us/um/people/gray/talks/WebServices_Grid.ppt

18 M. Cafaro and G. Aloisio

Parameter sweep applications, in which the same executable is run each time
using a different set of input files, are good candidates for execution in both grids
and clouds environments: in general, loosely coupled applications with infrequent
or absent interprocess communications perform well.

Finally, complex applications with data and compute dependencies are usually
described as workflow applications and characterized by a graph whose vertices rep-
resent applications and whose arcs model dependencies among the vertices. When
all of the nodes in the graph represent sequential batch jobs, a workflow can be run
on clouds (we already noted that parallel applications are not well suited to clouds).
Conversely, if some of the nodes requires parallel processing, grids are more appro-
priate.

1.9 Conclusions

This chapter introduced the concepts of grids, clouds, and virtualization. We have
discussed the key role of grids in advancing the state of the art in distributed com-
puting, and how the interest for these technologies gave rise to a plethora of projects,
aimed both at developing the needed middleware stack and exploiting the new
paradigm to accelerate science discovery. We have seen that despite a decade of
active research, no viable commercial grid computing provider has emerged, and
have investigated the reasons behind. The main problems seem to be related to the
underlying complexity of deploying and managing a grid, even though there are
scientific applications that may actually benefit from grid computing (in particu-
lar, complex applications requiring a distributed workflow model of execution). The
other problem, data-compute affinity, affects both grids and clouds, even though in
the cloud case the volume of data to be transferred is usually relatively scarce. We
have then examined the emerging cloud computing paradigm, comparing and con-
trasting it with grids from many perspectives. Clouds build on virtualization tech-
nologies which act as one of the key enablers, and are well suited to both loosely
coupled applications with infrequent or absent interprocess communications (such
as parameter sweep studies) and to MapReduce-based applications. Our review of
virtualization/cloud technologies puts in context cloud computing environments. Fi-
nally, we have briefly discussed the economics behind grids and clouds, laying out
the foundations and providing fertile ground for the next chapters of this book.

Acknowledgements The authors with to thank Martin Walker for the insightful discussions on
grids and clouds in the context of the SEPAC grid project; part of the materials of this chapter are
based on one of his many interesting presentations.

References

1. URL http://bochs.sourceforge.net
2. URL http://wiki.qemu.org

http://bochs.sourceforge.net
http://wiki.qemu.org

1 Grids, Clouds, and Virtualization 19

3. URL http://www.vmware.com
4. URL http://xen.org
5. URL http://www.parallels.com
6. URL http://plex86.sourceforge.net
7. URL http://www.winehq.org
8. URL http://www.codeweavers.com/products/cxmac
9. URL http://developer.apple.com/legacy/mac/library/documentation/MacOSX/Conceptual/

universal_binary/universal_binary.pdf
10. Abramson, D., Buyya, R., Giddy, J.: A computational economy for grid computing and its

implementation in the Nimrod-G resource broker. Future Gener. Comput. Syst. 18(8), 1061–
1074 (2002). doi:10.1016/S0167-739X(02)00085-7

11. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: an ex-
periment in public-resource computing. Commun. ACM 45(11), 56–61 (2002). doi:10.1145/
581571.581573

12. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of
cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of Califor-
nia, Berkeley (2009). URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-
28.html

13. Beberg, A.L., Ensign, D.L., Jayachandran, G., Khaliq, S., Pande, V.S.: Folding@home:
Lessons from eight years of volunteer distributed computing. In: IPDPS ’09: Proceedings of
the 2009 IEEE International Symposium on Parallel & Distributed Processing, pp. 1–8. IEEE
Computer Society, Washington (2009). doi:10.1109/IPDPS.2009.5160922

14. Benger, W., Foster, I.T., Novotny, J., Seidel, E., Shalf, J., Smith, W., Walker, P.: Numerical
relativity in a distributed environment. In: Proceedings of the Ninth SIAM Conference on
Parallel Processing for Scientific Computing. SIAM, Philadelphia (1999)

15. Boardman, R., Crouch, S., Mills, H., Newhouse, S., Papay, J.: Towards grid interoperability.
In: All Hands Meeting 2007, OMII-UK Workshop (2007)

16. Brunett, S., Davis, D., Gottschalk, T., Messina, P., Kesselman, C.: Implementing distributed
synthetic forces simulations in metacomputing environments. In: HCW ’98: Proceedings of
the Seventh Heterogeneous Computing Workshop, p. 29. IEEE Computer Society, Los Alami-
tos (1998)

17. Cafaro, M., Aloisio, G. (eds.): Grids, Clouds and Virtualization. Springer, Berlin (2010)
18. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.

ACM 51(1), 107–113 (2008). doi:10.1145/1327452.1327492
19. Defanti, T., Foster, I., Papka, M.E., Kuhfuss, T., Stevens, R., Stevens, R.: Overview of the I-

EWAY: wide area visual supercomputing. Int. J. Supercomput. Appl. 10(2), 123–130 (1996)
20. Dimitrakos Theoand Martrat, J., Wesner, S. (eds.): Service Oriented Infrastructures and Cloud

Service Platforms for the Enterprise—A Selection of Common Capabilities Validated in Real-
Life Business Trials by the BEinGRID Consortium. Springer, Berlin (2010)

21. Erwin, D.W., Snelling, D.F.: Unicore: a grid computing environment. In: Euro-Par ’01: Pro-
ceedings of the 7th International Euro-Par Conference Manchester on Parallel Processing,
pp. 825–834. Springer, London (2001)

22. Evangelinos, C., Hill, C.N.: Cloud computing for parallel scientific HPC applications: fea-
sibility of running coupled atmosphere-ocean climate models on Amazon’s EC2. In: Cloud
Computing and Its Applications (2008)

23. Foster, I.: What is the grid? A three point checklist (2002). URL http://www.mcs.anl.gov/itf/
Articles/WhatIsTheGrid.pdf (unpublished)

24. Foster, I.: Globus toolkit version 4: Software for service-oriented systems. In: IFIP Interna-
tional Conference on Network and Parallel Computing. LNCS, vol. 3779, pp. 2–13. Springer,
Berlin (2005)

25. Foster, I., Geisler, J., Nickless, B., Smith, W., Tuecke, S.: Software infrastructure for the
I-WAY high-performance distributed computing experiment. In: Proceedings of the 5th IEEE
Symposium on High Performance Distributed Computing, pp. 562–571. Society Press (1996)

http://www.vmware.com
http://xen.org
http://www.parallels.com
http://plex86.sourceforge.net
http://www.winehq.org
http://www.codeweavers.com/products/cxmac
http://developer.apple.com/legacy/mac/library/documentation/MacOSX/Conceptual/universal_binary/universal_binary.pdf
http://developer.apple.com/legacy/mac/library/documentation/MacOSX/Conceptual/universal_binary/universal_binary.pdf
http://dx.doi.org/10.1016/S0167-739X(02)00085-7
http://dx.doi.org/10.1145/581571.581573
http://dx.doi.org/10.1145/581571.581573
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://dx.doi.org/10.1109/IPDPS.2009.5160922
http://dx.doi.org/10.1145/1327452.1327492
http://www.mcs.anl.gov/itf/Articles/WhatIsTheGrid.pdf
http://www.mcs.anl.gov/itf/Articles/WhatIsTheGrid.pdf

20 M. Cafaro and G. Aloisio

26. Foster, I., Kesselman, C.: The Globus project: a status report. Future Gener. Comput. Syst.
15(56), 607–621 (1999). doi:10.1016/S0167-739X(99)00013-8

27. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid—enabling scalable virtual or-
ganizations. Int. J. Supercomput. Appl. 15, 2001 (2001)

28. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree com-
pared. In: Grid Computing Environments Workshop, GCE ’08, pp. 1–10 (2008). doi:10.1109/
GCE.2008.4738445

29. Fox, G.C., Pierce, M.: Grids meet too much computing: too much data and never
too much simplicity (2007). URL http://grids.ucs.indiana.edu/ptliupages/publications/
TooMuchComputingandData.pdf (unpublished)

30. Gentzsch, W.: Sun grid engine: towards creating a compute power grid. In: CCGRID ’01:
Proceedings of the 1st International Symposium on Cluster Computing and the Grid, p. 35.
IEEE Computer Society, Washington (2001)

31. Gottfrid, D.: URL http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-
computing-fun

32. Gray, J.: Distributed computing economics. Queue 6(3), 63–68 (2008). doi:10.1145/1394127.
1394131

33. Grimshaw, A.S., Wulf, W.A., The Legion Team, C.: The legion vision of a worldwide virtual
computer. Commun. ACM 40(1), 39–45 (1997). doi:10.1145/242857.242867

34. Hadoop: URL http://hadoop.apache.org
35. Hajdu, L., Kocoloski, A., Lauret, J., Miller, M.: Integrating Xgrid into the HENP distributed

computing model. J. Phys. Conf. Ser. 119 (2008). doi:10.1088/1742-6596/119/7/072018
36. Hughes, B.: Building computational grids with Apple’s Xgrid middleware. In: ACSW Fron-

tiers ’06: Proceedings of the 2006 Australasian Workshops on Grid Computing and e-
Research, pp. 47–54. Australian Computer Society, Darlinghurst (2006)

37. Kesselman, C., Foster, I.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Mateo (1998)

38. Lakshmi, J., Nandy, S.K.: Quality of service for I/O workloads in multicore virtualized
servers. In: Cafaro, M., Aloisio, G. (eds.) Grids, Clouds and Virtualization. Springer, Berlin
(2010)

39. Laszewski, G.V., Insley, J.A., Foster, I., Bresnahan, J., Kesselman, C., Su, M., Thiebaux, M.,
Rivers, M.L., Wang, S., Tieman, B., Mcnulty, I.: Real-time analysis, visualization, and steer-
ing of microtomography experiments at photon sources. In: Proceedings of the Ninth SIAM
Conference on Parallel Processing for Scientific Computing, pp. 22–24. SIAM, Philadelphia
(1999)

40. Laure, E., Fisher, S.M., Frohner, A., Grandi, C., Kunszt, P.Z., Krenek, A., Mulmo, O., Pacini,
F., Prelz, F., White, J., Barroso, M., Buncic, P., Hemmer, F., Di Meglio, A., Edlund, A.: Pro-
gramming the Grid using gLite. Tech. Rep. EGEE-PUB-2006-029 (2006)

41. Laure, E., Jones, B.: Enabling grids for e-Science: the EGEE project. Tech. Rep. EGEE-PUB-
2009-001. 1 (2008)

42. Li, J., Loo, B.T., Hellerstein, J.M., Kaashoek, M.F., Karger, D.R., Morris, R.: On the feasibility
of peer-to-peer web indexing and search. In: IPTPS, pp. 207–215 (2003)

43. Matsuoka, S., Shinjo, S., Aoyagi, M., Sekiguchi, S., Usami, H., Miura, K.: Japanese compu-
tational grid research project: Naregi. Proc. IEEE 93(3), 522–533 (2005)

44. Mersenne Research, I.: URL http://www.mersenne.org
45. Nanda, S., Cker Chiueh, T.: A survey of virtualization technologies. Tech. rep., State Univer-

sity of New York at Stony Brook (2005)
46. Nanda, S., Li, W., Lam, L.C., Chiueh, T.C.: Bird: binary interpretation using runtime

disassembly. In: CGO ’06: Proceedings of the International Symposium on Code Gen-
eration and Optimization, pp. 358–370. IEEE Computer Society, Washington (2006).
doi:10.1109/CGO.2006.6

47. Perryman, A.L., Zhang, Q., Soutter, H.H., Rosenfeld, R., McRee, D.E., Olson, A.J., Elder,
J.E., Stout, C.D.: Fragment-based screen against HIV protease. Chem. Biol. Drug Des. 75(3),
257–268 (2010). doi:10.1111/j.1747-0285.2009.00943.x

http://dx.doi.org/10.1016/S0167-739X(99)00013-8
http://dx.doi.org/10.1109/GCE.2008.4738445
http://dx.doi.org/10.1109/GCE.2008.4738445
http://grids.ucs.indiana.edu/ptliupages/publications/TooMuchComputingandData.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/TooMuchComputingandData.pdf
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://dx.doi.org/10.1145/1394127.1394131
http://dx.doi.org/10.1145/1394127.1394131
http://dx.doi.org/10.1145/242857.242867
http://hadoop.apache.org
http://dx.doi.org/10.1088/1742-6596/119/7/072018
http://www.mersenne.org
http://dx.doi.org/10.1109/CGO.2006.6
http://dx.doi.org/10.1111/j.1747-0285.2009.00943.x

1 Grids, Clouds, and Virtualization 21

48. Schick, S.: URL http://blogs.itworldcanada.com/shane/2008/04/22/five-ways-of-defining-
cloud-computing/

49. Skype: URL http://www.skype.com
50. Smarr, L., Catlett, C.E.: Metacomputing. Commun. ACM 35(6), 44–52 (1992). doi:10.1145/

129888.129890
51. Smith, W., Foster, I.T., Taylor, V.E.: Predicting application run times using historical infor-

mation. In: IPPS/SPDP ’98: Proceedings of the Workshop on Job Scheduling Strategies for
Parallel Processing, pp. 122–142. Springer, London (1998)

52. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experi-
ence. Concurr. Pract. Exp. 17(2–4), 323–356 (2005)

53. Wang, L., Zhan, J., Shi, W., Liang, Y., Yuan, L.: In cloud, do MTC or HTC service providers
benefit from the economies of scale? In: MTAGS ’09: Proceedings of the 2nd Workshop on
Many-Task Computing on Grids and Supercomputers, pp. 1–10. ACM, New York (2009).
doi:10.1145/1646468.1646475

54. Weiss, A.: Computing in the clouds. Networker 11(4), 16–25 (2007). doi:10.1145/1327512.
1327513

55. Whitaker, A., Shaw, M., Gribble, S.D.: Denali: lightweight virtual machines for distributed
and networked applications. In: Proceedings of the USENIX Annual Technical Conference
(2002)

56. Xu, M.Q.: Effective metacomputing using lsf multicluster. In: IEEE International Symposium
on Cluster Computing and the Grid, p. 100 (2001). doi:10.1109/CCGRID.2001.923181

http://blogs.itworldcanada.com/shane/2008/04/22/five-ways-of-defining-cloud-computing/
http://blogs.itworldcanada.com/shane/2008/04/22/five-ways-of-defining-cloud-computing/
http://www.skype.com
http://dx.doi.org/10.1145/129888.129890
http://dx.doi.org/10.1145/129888.129890
http://dx.doi.org/10.1145/1646468.1646475
http://dx.doi.org/10.1145/1327512.1327513
http://dx.doi.org/10.1145/1327512.1327513
http://dx.doi.org/10.1109/CCGRID.2001.923181

Chapter 2
Quality of Service for I/O Workloads
in Multicore Virtualized Servers

J. Lakshmi and S.K. Nandy

Abstract Emerging trend of multicore servers promises to be the panacea for all
data-center issues with system virtualization as the enabling technology. System vir-
tualization allows one to create virtual replicas of the physical system, over which
independent virtual machines can be created, complete with their own, individual
operating systems, software, and applications. This provides total system isolation
of the virtual machines. Apart from this, the key driver for virtualization adoption in
data-centers will be safe virtual machine performance isolation that can be achieved
over a consolidated server with shared resources. This chapter identifies the basic
requirements for performance isolation of virtual machines on such servers. The
consolidation focus is on enterprise workloads that are a mix of compute and I/O
intensive workloads. An analysis of prevalent, popular system virtualization tech-
nologies is presented with a view toward application performance isolation. Based
on the observed lacunae, an end-to-end system virtualization architecture is pro-
posed and evaluated.

2.1 Introduction

System virtualization on the emerging multicore servers is a promising technology
that has solutions for many of the key data-center issues. Today’s data-centers have
concerns of curtailing space and power footprint of the computing infrastructure,
which the multicore servers favorably address. A typical multicore server has suf-
ficient computing capacity for aggregating several server applications on a single
physical machine. The most significant issue with co-hosting multiple-server appli-
cations on a single machine is with the software environment of each of the appli-

J. Lakshmi (�) · S.K. Nandy
SERC, Indian Institute of Science, Bangalore 560012, India
e-mail: jlakshmi@serc.iisc.ernet.in

S.K. Nandy
e-mail: nandy@serc.iisc.ernet.in

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_2, © Springer-Verlag London Limited 2011

23

mailto:jlakshmi@serc.iisc.ernet.in
mailto:nandy@serc.iisc.ernet.in
http://dx.doi.org/10.1007/978-0-85729-049-6_2

24 J. Lakshmi and S.K. Nandy

cations. System virtualization addresses this problem since it enables the creation
of virtual replicas of a complete system, over which independent virtual machines
(VMs) can be built, complete with their own, individual operating systems, software,
and applications. This results in complete software isolation of the VMs, which al-
lows independent applications to be hosted within independent virtual machines on
a single physical server.

Apart from the software isolation, the key driver for virtualization adoption in
data-centers will be safe virtual machine performance isolation that can be achieved
over a consolidated server. This is essential, particularly for enterprise application
workloads, like database, mail, and web-based applications that have both CPU and
I/O workload components. Current commodity multicore technologies have system
virtualization architectures that provide CPU workload isolation. The number of
CPU-cores in comparison to I/O interfaces is high in multicore servers. This results
in the sharing of I/O devices among independent virtual machines. As a result, this
changes the I/O device sharing dynamics when in comparison to dedicated servers,
wherein all the resources like the processors, memory, I/O interfaces for disk and
network access are architected to be managed by a single OS. On such systems, so-
lutions that optimize or maximize the application usage of the system resources are
sufficient to address the performance of the application. When multiple, indepen-
dent applications are consolidated onto a multicore server, using virtual machines,
performance interference caused due to shared resources across multiple VMs adds
to the performance challenges. The challenge is in ensuring performance of the inde-
pendent I/O intensive applications, hosted inside isolated VMs, on the consolidated
server while sharing a single I/O device [10].

Prevalent virtualization architectures suffer from the following distinct problems
with regard to I/O device virtualization;

1. Device virtualization overheads are high due to which there is a reduction in the
total usable bandwidth by an application hosted inside the VM.

2. Prevalent device virtualization architectures are such that sharing of the device
causes its access path also to be shared. This causes performance degradation
that is dependent on I/O workloads and limits scalability of VMs that can share
the I/O device [1].

3. Device access path sharing causes security vulnerabilities for all the VMs sharing
the device [35].

These reasons cause variability in application performance that is dependent on the
nature of consolidated workloads and the number of VMs sharing the I/O device.

One way to control this variability is to impose necessary Quality of Service
(QoS) controls on resource allocation and usage of shared resources. Ideally, the
QoS controls should ensure that:

• There is no loss of application performance when hosted on virtualized servers
with shared resources.

• Any spare resource is made available to other contending workloads.

The chapter starts with a discussion on the resource specific QoS controls that
an application’s performance depends on. It then explores the QoS controls for re-

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 25

source allocation and usage in prevalent system virtualization architectures. The
focus of this exploration is on the issues of sharing a single NIC across multiple vir-
tual machines (VMs). Based on the observed lacunae, an end-to-end architecture for
virtualizing network I/O devices is presented. The proposed architecture is an ex-
tension to that of what is recommended in the PCI-SIG IOV specification [21]. The
goal of this architecture is to enable fine-grained controls to a VM on the I/O path of
a shared device leading to minimization of the loss of usable device bandwidth with-
out loss of application performance. The proposed architecture is designed to allow
native access of I/O devices to VMs and provides the device-level QoS controls
for managing VM specific device usage. The architecture evaluation is carried out
through simulation on a layered queuing network(LQN) [3, 4] model to demonstrate
its benefits. The proposed architecture improves application throughput by 60% as
in comparison to what is observed on the existing architectures. This performance
is closer to the performance observed on nonvirtualized servers. The proposed I/O
virtualization architecture meets its design goals and also improves the number of
VMs that can share the I/O device. Also, the proposed architecture eliminates some
of the shared device associated security vulnerabilities [35].

2.2 Application Requirements for Performance Isolation on
Shared Resources

Application performance is based on timely availability of the required resources
like processors, memory, and I/O devices. The basic guideline for consolidating
enterprise servers over multicore virtualized systems is by ensuring availability of
required resources as and when required [7]. For the system to be able to do so, the
application resource requirements are enumerated using resource requirement (RR)
tuples. An RR tuple is an aggregated list of various resources that the application’s
performance depends on. Thus RR tuple is built using individual resource tuples.
Each resource tuple is made up of a list of resource attributes or the attribute tuples.
Using this definition, a generic RR tuple can be written as follows:

Application(RR) =
(R1 < A1(Unit,Def ,Min,Max),A2(Unit,Def ,Min,Max), . . . >,

R1 < A1(Unit,Def ,Min,Max),A2(Unit,Def ,Min,Max), . . . >,

. . .)

where:

• Application(RR)—Resource requirement tuple of the application.
• R1—Name of a resource, viz. processor (CPU), memory, network(NIC), etc.
• A1—Name of the attribute of the associated resource. As an example, if A1 rep-

resents the CPU speed attribute, it is denoted by the tuple that describes the CPU
speed requirements for the application.

26 J. Lakshmi and S.K. Nandy

• (Unit, Def, Min, Max) represent the Unit of measurement, Default, Minimum, and
Maximum values of the resource attribute.

Using the XML format for resource specification, akin to Globus Resource Spec-
ification Language [13], the following example in Fig. 2.1 illustrates the applica-
tion(RR) for a typical VM that has both compute and I/O workloads.

In the depicted example, the resource tuple for the CPU resource is described
by the <CPU_Resource_Descriptor> and </CPU_Resource_Descriptor> tag pair.
Attribute tuples relevant to and associated with this resource are specified using the
attribute and value tag pair, within the context of resource tag pair. Each attribute
is specified by its Unit of measurement, Default, Minimum, and Maximum values
that the virtual machine monitor’s (VMM’s) resource allocator uses for allocating
the resource to the VM. In the example, the CPU speed is defined by the attribute
tags <Speed> and </Speed>. The Unit of Measurement for CPU speed is men-
tioned as MHz. The attribute values for Default, Minimum, and Maximum specify
the CPU speed required for the desired application performance hosted inside the

Fig. 2.1 An example Application Resource Requirement tuple for a VM, expressed in XML

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 27

VM. Default value specifies the attribute value that the VMM can initially allo-
cate to the VM. On an average, this is the value that the VM is expected to use.
The Minimum value defines the least value for the attribute that the VM needs to
support the guaranteed application performance. The Maximum value defines the
maximum attribute value that the VM can use while supporting its workload. All
the three attribute values can be effectively used if the VMM uses dynamic adaptive
resource allocation policies. For each resource, its tuple is specified using attribute
value tuples that completely describe the specific resource requirement in terms of
the quantity, number of units, and speed of resource access.

On a virtualized server the physical resources of the system are under the control
of the VMM. The resource tuples are used by the VMM while allocating or deal-
locating resources to the VMs. It can be assumed that RR contains values that are
derived from the application’s performance requirements. In the context of multi-
core servers, with server consolidation as the goal, each application can be assumed
to be hosted in an independent VM which encapsulates the application’s environ-
ment. Hence, the application’s resource tuples can be assumed to be the RR for each
VM of the virtualized server. In the case where multiple applications are co-hosted
on a single VM, these resource tuples can be arrived at by aggregating the resource
requirements of all the applications hosted by the VM.

2.3 Prevalent Commodity Virtualization Technologies and QoS
Controls for I/O Device Sharing

Commodity virtualization technologies like Xen and Vmware have made the normal
desktop very versatile. A generic architecture of system virtualization, implemented
in these systems, is given in Fig. 2.2. The access to CPU resource is native, to all
VMs sharing the CPU, for all instructions except the privileged instructions. The
privileged instructions are virtualized, i.e., whenever such instructions are executed

Fig. 2.2 Generic System
Virtualization architecture of
prevalent commodity
virtualization technologies

28 J. Lakshmi and S.K. Nandy

from within the VM, they are trapped, and control is passed to the VMM. All I/O
instructions fall under the category of privileged instructions. Thus, I/O devices like
the Network Interface Card (NIC) and the DISK are treated differently, when vir-
tualized. There are two different, popularly adopted, methods used for virtualizing
I/O devices, namely, para-virtualization and emulation [27]. Para-virtualized mode
of access is achieved using a virtual device driver along with the physical device
driver. A hosting VM or the VMM itself has exclusive, native access to the physical
device. Other VMs sharing the device use software-based mechanisms, like the vir-
tual device driver, to access the physical device via the hosting VM or the VMM. In
emulated mode of access, each VM sharing the physical device has a device driver
that is implemented using emulation over the native device driver hosted by the
VMM. Both these modes provide data protection and integrity to independent VMs
but suffer from loss of performance and usable device bandwidth. Details of the
evaluation are elucidated in the following section. In order to understand the effect
of the device virtualization architectures on application performance, experimental
results of well-known benchmarks, httperf [8] and netperf [2], are evaluated. The
first experiment is described in Sect. 2.3.1 and explores how virtualization affects
application performance. The second experiment, described in Sect. 2.3.2, evalu-
ates the existing QoS constructs in virtualized architectures for their effectiveness
in providing application-specific guarantees.

2.3.1 Effect of Virtualization on Application Performance

Prevalent commodity virtualization technologies, like Xen and Vmware, are built
over system architectures designed for single OS access. The I/O device architec-
tures of such systems do not support concurrent access to multiple VMs. As a result,
the prevailing virtualization architectures support I/O device sharing across multiple
VMs using software mechanisms. The result is device sharing along with its access
path. Hence, serialization occurs at the device and within the software layers used
to access the device.

In virtualized servers, disk devices are shared differently compared to sharing of
NICs. In the case of disk devices, a disk partition is exposed as a filesystem that
is exported to a single VM. Any and every operation to this filesystem is from a
single VM, and all read and write disk operations are block operations. The data
movements to and from the filesystem is synchronized using the filesystem buffer
cache that is resident within the VM’s address space. The physical data movement
is coordinated by the native device drivers within the VMM or the hosted VM,
and the para-virtualized or emulated device driver resident in the VM. In the para-
virtualized mode, the overheads are due to the movement of data between the device
hosting VM and the application VM. In the case of emulation mode of access, the
overheads manifest due to the translation of every I/O instruction between the em-
ulated device driver and the native device driver. Due to this nature of I/O activity,
VM specific filesystem policies get to be implemented within the software layers of

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 29

the VMM or the hosting VM. Since the filesystem activity is block based, setting
up appropriate block sizes can, to some extent, enable the control of bandwidth and
speed requirements on the I/O channel to the disk. However, these controls are still
coarse-grained and are insufficient for servers with high consolidation ratios.

For network devices, the existing architecture poses different constraints. Unlike
for the disk I/O which is block based, network I/O is packet based, and sharing
a single NIC with multiple VMs has intermixed packet streams. This intermixing
is transparent to the device and is sorted into per VM stream by the VMM or the
hosting VM. Apart from this, every packet is subjected to either instruction transla-
tion (emulation) or address translation (para-virtualization) due to virtualization. In
both the cases, virtualization techniques build over existing “single-OS over single
hardware” model. This degrades application performance.

Throughput studies of standard enterprise benchmarks highlight the effects of
virtualization and consolidation based device sharing. Since NIC virtualization puts
forth the basic issues with virtualization technologies, an analysis of NIC sharing
over application throughput is presented. Figures 2.3a and 2.4a depict the perfor-
mance of two standard benchmarks, netperf [2] and httperf [8], wherein the bench-
mark server is hosted in three different environments, namely nonvirtualized, virtu-
alized, and consolidated servers. The nonvirtualized environment is used to generate
the baseline for the metric against which the comparison is made for the perfor-
mance on virtualized and consolidated server. The virtualized server hosts only one
VM wherein the complete environment of the nonvirtualized server is reproduced
inside the VM. This environment is used to understand the overheads of virtualiza-
tion technology. The consolidated server hosts two VMs, similar to the VM of the
virtualized server, but with both VMs sharing the same NIC. The consolidated server
environment is used to understand the I/O device sharing dynamics on a virtualized
server.

For the netperf benchmark, netperf is the name of the client, and netserver is
the server component. The study involves execution of the TCP_CRR test of net-
perf. The TCP_CRR test measures the connect-request-response sequence through-
put achievable on a server and is similar to the access request used in http-based
applications. In the case of httperf benchmark, the client, called httperf, communi-
cates with a standard http server using the http protocol. In the httperf test used, the
client allows for specifying the workload in terms of the number of http requests to
the server in one second, for a given period of time, to generate statistics like the
average number of replies received from the server (application throughput), the av-
erage response time of a reply, and the network bandwidth utilized for the workload.
While netperf gives the achievable or achieved throughput, httperf gives an aver-
age throughput calculated for a subset of samples, executed over a specified period
of time, within the given experiment. Hence, httperf results give an optimistic esti-
mate which may fall short of expectation in situations where sustained throughput
is a requirement.

It is observed from the throughput graphs of netperf and httperf that there is
a significant drop in application throughput as it is moved from nonvirtualized to
Xen virtualized server. Xen virtualization uses para-virtualization mechanism with

30 J. Lakshmi and S.K. Nandy

Fig. 2.3 netserver achievable Throughput and corresponding %CPU Utilization on Xen virtual-
ized platform

Fig. 2.4 httperf server Throughput and %CPU Utilization on Xen virtualized single-core server.
The hypervisor and the VMs are pinned to the same core

software bridging to virtualize the NIC. The application throughput loss is the over-
all effect of virtualization overheads. There is a further drop when the application
is hosted on a consolidated server with the VMs sharing the NIC. This is obvi-
ous, since for the consolidated server, the NIC is now handling twice the amount of
traffic in comparison to that of the virtualized server case. It is interesting to note
that the virtualization overheads manifest as extra CPU utilization on the virtualized
server [17]. This is observed by the CPU utilization graphs of Figs. 2.3b and 2.4b.
Both benchmarks indicate increased CPU activity to support the same application
throughput. This imposes response latencies leading to application throughput loss
and also usable device bandwidth loss for the VM. The noteworthy side effect of this
device bandwidth loss, for a VM, is that it is usable by another VM, which is shar-
ing the device. This is noticed in the throughput graphs of the consolidated server
for netperf benchmark. It is an encouraging fact for consolidating I/O workloads on

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 31

Fig. 2.5 httperf server Throughput and %CPU Utilization on Vmware-ESXi virtualized single–
core server. The VMs are pinned to a single core, while hypervisor uses all available cores

virtualized servers. However, httperf benchmark performance on the consolidated
server is not very impressive and suggests further investigation.

Conducting this experiment on Vmware virtualization technology produces sim-
ilar behavior, which is depicted in Fig. 2.5. The httperf benchmark tests are con-
ducted on an Intel Core2Duo server with two cores. Unlike the case of Xen, pinning
of ESXi server (the hypervisor) to a CPU is not allowed. Hence, any CPU utilization
measurements for the ESXi hypervisor on Vmware show utilizations for all CPUs
included. This results in %CPU utilization above 100% in the case of multicore
systems. Vmware-ESXi server implements NIC virtualization using device emula-
tion. It is observed that the overheads of emulation are comparatively quite high in
relation to para-virtualization used in Xen. Here also, virtualization of NIC results
in using up more CPU to support network traffic on a VM when in comparison to
a nonvirtualized server. The other important observation is the loss of application
throughput. Device emulation imposes higher service times for packet processing,
and hence drastic drop of application throughput is observed in comparison to non-
virtualized and para-virtualized systems. In this case 70% drop on the maximum
sustained throughput is observed in comparison to the throughput achieved in the
nonvirtualized environment. This loss is visible even in the consolidated server case.
Interestingly, the total network bandwidth used in the case of consolidated VMs on
Vmware-ESXi was only 50% of the available bandwidth. Hence, the bottleneck is
the CPU resource available to the VMs, since each of the VM was hosted on the
same core. It is reasonable to believe that multicores can alleviate the CPU require-
ment on the consolidated server. On such systems, the CPU requirement of the VMs
can be decoupled from that of the VMM by allocating different CPU cores to each
of them. Study of httperf benchmark on consolidated server with each VM pinned
to a different core, for both Xen and Vmware-ESXi virtualized server, shows oth-
erwise. Application throughput increase is observed in comparison to single-core
consolidated server, but this increase still falls short by 10% of what was achieved
for the nonvirtualized server. The reason for this shortcoming is because both VMs
sharing the NIC also share the access path that is implemented by the Independent

32 J. Lakshmi and S.K. Nandy

Fig. 2.6 httperf server %CPU Utilization on Xen and Vmware-ESXi virtualized multicore server.
The hypervisor and the VMs are pinned to independent cores

Driver Domain (IDD) in the case of Xen and the hypervisor in the case of Vmware-
ESXi virtualized server. This sharing manifests as serialization and increased CPU
utilization of the IDD or the hypervisor, which becomes the bottleneck as the work-
load increases. Also, this bottleneck restricts the number of VMs that can share the
NIC. This is clearly depicted in the graphs of Fig. 2.6. In Fig. 2.6a, it is observed
that as the httperf workload is increasing, there is a linear increase in the CPU uti-
lization of the VMs as well as the Xen-IDD hosting the NIC. The CPU utilization of
the IDD, however, is much more when compared to the CPU utilization of either of
the VMs. This is because the IDD is supporting network streams to both the VMs.
As a consequence, it is observed that even though there is spare CPU available to
the VMs, they cannot support higher throughput since the IDD has exhausted its
CPU resource. This indicates that lack of concurrent device with concurrent access
imposes serialization constraints on the device and its access path which limits de-
vice sharing scalability on virtualized servers. This behavior is also observed in the
case of the Vmware-ESXi server as is depicted in Fig. 2.6b. However, as in the case
of single-core experiments, the CPU Utilization by the hypervisor and the VMs is
significantly much higher in comparison to the Xen server for the same benchmark
workload. This results in poor performance when compared to para-virtualized de-
vices, but yields more unused device bandwidth. As a result, Vmware-ESXi server
supports higher scalability for sharing the NIC.

The analysis for multicore virtualized server CPU Utilization indicates that even
with the availability of required resources, for each of the VMs and the hypervi-
sor, the device sharing architecture has constraints that impose severe restrictions
in usable bandwidth and scalability of device sharing. These constraints are specif-
ically due to serialization of device and its access paths. Hence, it is necessary to
rearchitect device virtualization to enable concurrent device access to eliminate the
bottlenecks evident in device sharing by the VMs.

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 33

2.3.2 Evaluation of Network QoS Controls

The most noteworthy point of observation of the study in Sect. 2.3.1 is the behavior
of each stream of benchmark on the consolidated server. In general, it is observed
that there is a further reduction of throughput on the consolidated server in compar-
ison to the single VM on a virtualized server, for both the benchmarks netperf and
httperf, with a marked decrement in the latter case. This indicates the obvious: lack
of QoS constraints would lead to severe interference in performance delivered by
the device sharing VMs.

The current commodity virtualization technologies like Xen and Vmware allow
for VM specific QoS controls on different resources using different mechanisms.
The CPU resource allocations are handled directly by the VMM schedulers like
Credit, SEDF, or BVT schedulers of Xen [11]. Also, as discussed in [17, 24, 31, 32],
the existing CPU resource controls are fine-grained enough to deliver desired per-
formance for CPU-based workloads. The problem is with I/O devices. The access
to an I/O device is always through the hypervisor or the driver domain OS kernel to
ensure data integrity and protection. The device is never aware as to which VM is
using it at any given instance of time; this information and control is managed by
the hypervisor or the driver domain. Hence, resource allocation controls with regard
to the I/O devices are at a higher abstraction level rather than at the device level,
unlike in the case of the CPU resource. These controls are effective for the outgoing
streams from the server, since packets that overflow are dropped before reaching the
NIC. However, for the incoming stream, the control is ineffective since the decision
of accepting or rejecting is made after the packet is received by the NIC. Hence,
the controls are coarse-grained and affect the way resource usage is controlled and
thereby the application performance. In scenarios where I/O device utilization is
pushed to its maximum, limitations of such QoS controls are revealed as loss of us-
able bandwidth or scalability of sharing, thereby causing unpredictable application
performance, as is illustrated in the next section.

To understand the effect of software-based QoS controls for network bandwidth
sharing, an experimental analysis of httperf benchmark on a consolidated server is
presented. The consolidated server hosts two VMs, namely VM1 and VM2, that
are sharing a NIC. Each VM hosts one http server that responds to a httperf client.
The httperf benchmark is chosen for this study because it allows customization of
observation time of the experiment. This is necessary since the bandwidth control
mechanisms that are available are based on time-sampled averages and hence, need
a certain interval of time to affect application throughput. The experiment involves
two studies, one is that of best effort sharing where no QoS is imposed on either
of the VMs, and in the second case VM1 is allowed to use the available network
bandwidth when VM2 is constrained, by imposing specific QoS value based on the
desired application throughput. For both studies, each VM is subjected to equal load
from the httperf clients.

The performance of consolidated server corresponding to the best effort shar-
ing case is presented in Figs. 2.4a and 2.5a. As it is observed from the graphs, the
NIC bandwidth sharing is equal in both the virtualization solutions. When no QoS

34 J. Lakshmi and S.K. Nandy

Fig. 2.7 Effect of hypervisor network bandwidth controls on application throughput for consoli-
dated virtualized server hosting two VMs

controls are enforced and each VM has equal demand for the resource, it is shared
equally on a best effort basis. In the second study, when bandwidth control is en-
forced on the VM2, while allowing complete available bandwidth to the VM1, the
expected behavior is to see improved throughput for the unconstrained VM1. This
is to say, VM1 performance is expected to be better in comparison to the best effort
case. Figure 2.7 demonstrates that imposing QoS controls on VM2 does not trans-
late to extra bandwidth availability for the other, unconstrained VM. The reasons
for this behavior are a multitude. The most significant ones being the virtualization
overhead in terms of the CPU resource required by the VMM or the hosting VM to
support I/O workload, serialization of the resource and its access path, lack of con-
trol on the device for the VM specific incoming network stream, and lastly, higher
priority to the incoming stream over the outgoing stream at the device. All these
lead to unpredictable application performance inspite of applying appropriate QoS
controls. Also, it is interesting to note that the variation in performance is dependent
on the nature of the consolidated workloads. This performance variation affects all
the consolidated workloads and makes the application guarantee weak. On multi-
core servers hosting many consolidated workloads of a datacenter, indeterminate
performance is definitely not acceptable. Also, since virtual device is an abstraction
supported in software, device usage controls are coarse grained and hence ineffec-
tive. This could lead to an easy denial of service attack on a consolidated server with
shared devices.

The bandwidth controls enforced are based on the following principle. For each
of the virtualization technologies used, i.e., Xen and Vmware, the network band-
width used by a single VM to support different httperf request rates, without perfor-
mance loss, is measured. These bandwidth measurements are used to apply control
on the outgoing traffic from VM2. Currently, the available controls allow constraints
only on the outgoing traffic. On the incoming traffic, ideally the control should be
applied at the device so that any packet causing overflow is dropped before recep-
tion. Such controls are not available at present. Instead, in Xen, at least one can use
the netfilter module’s stream-based controls after receiving the packet. This does not
serve the purpose, because by receiving a packet that could potentially be dropped

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 35

later, the device bandwidth is anyway wasted. Hence, the study involves using only
the outgoing traffic controls for the constrained VM.

The selection of different range of workloads, for each of the virtualized server,
is based on the maximum throughput that each can support in a consolidated server
environment. For each QoS control, the maximum throughput achieved, without
loss, by each of the VM, is plotted in the graphs of Figs. 2.7a and b. In these figures,
the x-axis represents the httperf request rate based on which the network bandwidth
control was applied on the VM2, and the y-axis represents the application through-
put achieved by each of the VMs. In the case of Xen, Linux tc utility of the netfilter
module [34] is used to establish appropriate bandwidth controls. Specifically, each
traffic stream from the VMs is defined using htb class with tbf queue discipline with
the desired bandwidth control. Each queue is configured with a burst value to sup-
port a maximum of 10 extra packets. In the case of Vmware-ESXi server, the Veam
Monitor controls for network bandwidth are used and populated with the same QoS
controls as is done for the Xen server.

Based on the behavior of the benchmarks, following bottlenecks are identified
for sharing network I/O device across multiple VMs on Xen or Vmware-ESXi vir-
tualized server.

• Virtualization increases the device utilization overheads, which leads to increased
CPU utilization of the hypervisor or the IDD hosting the device.

• Virtualization overheads cause loss of device bandwidth utilization from inside a
VM. Consolidation improves the overall device bandwidth utilization but further
adds to CPU utilization of the VMM and IDD. Also, if the VMM and IDD do not
support concurrent device access APIs, they themselves become the bottlenecks
for sharing the device.

• QoS features for regulating incoming and outgoing traffic are currently imple-
mented in the software stack. Uncontrolled incoming traffic at the device, to a
VM that is sharing a network device, can severely impact the performance of
other VMs because the decision to drop an incoming packet is taken after the
device has received the packet. This could potentially cause a denial of service
attack on the VMs sharing the device.

Based on the above study, a device virtualization architecture is proposed and de-
scribed in the following sections. The proposal is an extension to I/O virtualization
architecture, beyond what is recommended by the PCI-SIG IOV specification [21].
The PCI-SIG IOV specification defines the rudiments for making I/O devices vir-
tualization aware. On the multicore servers with server consolidation as the goal,
particularly in the enterprise segment, being able to support multiple virtual I/O de-
vices on a single physical device is a necessity. High-speed network devices, like
10-Gbps NICs, are available in the market. Pushing such devices to even 80% uti-
lization needs fine-grained resource management at the device level. The basic goal
of the proposed architecture is to be able to support finer levels of QoS controls,
without compromising on the device utilization. The architecture is designed to en-
able native access of I/O devices to the VMs and provide device-level QoS hooks
for controlling VM specific device usage. The architecture aims to reduce network

36 J. Lakshmi and S.K. Nandy

I/O device access latency and enable improvement in effective usable bandwidth in
virtualized systems by addressing the following issues:

• Separating device management issues from device access issues.
• Allowing native access of a device to a VM by supporting concurrent device

access and eliminating hypervisor/IDD from the path of device access.
• Enable fine-grained resource usage controls at the device.

In the remaining part of the chapter, we bring out the need for extending I/O device
virtualization architecture in Sect. 2.4. Section 2.5 highlights the issues in sharing of
the I/O device and its access path in prevalent virtualization architectures leading to
a detailed description of the proposed architecture to overcome the bottlenecks. Xen
virtualization architecture is taken as the reference model for the proposed archi-
tecture. In the subsequent part of the section, a complete description of the network
packet work-flow for the proposed architecture is presented. These work-flows form
a basis for generating the LQN model that is used in the simulation studies for ar-
chitecture evaluation described in Sect. 2.6. A brief description of the LQN model
generation and detailed presentation of simulation results is covered in Sect. 2.7.
Finally, in Sect. 2.8 the chapter conclusion highlights on the benefits of the archi-
tecture.

2.4 Review of I/O Virtualization Techniques

Virtualization technologies encompass a variety of mechanisms to decouple the
system architecture and the user-perceived behavior of hardware and software re-
sources. Among the prevalent technologies, there are two basic modes of virtualiza-
tion, namely, full system virtualization as in Vmware [15] and para-virtualization
as in Xen [11]. In full system virtualization complete hardware is replicated virtu-
ally. Instruction emulation is used to support multiple architectures. The advantage
of full system virtualization is that it enables unmodified Guest operating systems
(GuestOS) to execute on the VM. Since it adopts instruction emulation, it tends to
have high performance overheads as observed in the experimental studies described
earlier. In Para-virtualization the GuestOS is also modified suitably to run concur-
rently with other VMs on the same hardware. Hence, it is more efficient and offers
lower performance overheads. In either case, system virtualization is enabled by a
layer called the virtual machine monitor (VMM), also known as the hypervisor, that
provides the resource management functionality across multiple VMs. I/O virtual-
ization started with dedicated I/O devices assigned to a VM and has now evolved
to device sharing across multiple VMs through virtualized software interfaces [27].
A dedicated software entity, called the I/O domain, is used to perform physical de-
vice management [9, 12]. The I/O domain can be part of the VMM or be an inde-
pendent domain, like the independent driver domain (IDD) of Xen. In the case of
IDD, the I/O devices are private to the domain, and memory accesses by the devices
are restricted to the IDD. Any application in a VM seeking access to the device has

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 37

to route the request through the IDD, and the request has to pass through the address
translation barriers of the IDD and VM [14, 19, 20, 22].

Recent publications on concurrent direct network access (CDNA) [23] and scal-
able self-virtualizing network interface [16] are similar to the proposed work in the
sense that they explore the I/O virtualization issues on the multicore platforms and
provision for concurrent device access. However, the scalable self-virtualizing in-
terface describes assigning a specific core for network I/O processing on the virtual
interface and exploits multiple cores on embedded network processors for this. The
authors do not detail how the address translation issues are handled, particularly in
the case of virtualized environments. CDNA is architecturally closer to our archi-
tecture since it addresses concurrent device access by multiple VMs. CDNA relies
on per VM Receive (Rx) and Transmit (Tx) ring buffers to manage VM specific
network data. The VMM handles the virtual interrupts, and the Xen implementation
still uses IDD to share the I/O device. Also, authors do not address the performance
interference due to uncontrolled data reception by the device nor do they discuss the
need for addressing the QoS controls at the device level.

The proposed architecture addresses these and suggests pushing the basic con-
structs to assign QoS attributes like required bandwidth and priority into the device
to get fine-grained control on interference effects. Also, the proposed architecture
has it basis in exokernel’s [6] philosophy of separating device management from
protection. In exokernel, the idea was to extend native device access to applications
with the exokernel providing the protection. In the proposed approach, the exten-
sion of native device access is with the VM, the protection being managed by the
VMM and the device collectively. A VM is assumed to be running the traditional
GuestOS without any modifications with native device drivers. This is a strong point
in support of legacy environments without any need for code modification. Further,
the PCI-SIG community has realized the need for I/O device virtualization and has
come out with the IOV specification to deal with it. The IOV specification, however,
talks about device features to allow native access to virtual device interfaces, through
the use of I/O page tables, virtual device identifiers, and virtual device-specific in-
terrupts. The specification presumes that QoS is a software feature and does not ad-
dress this. Many implementations adhering to the IOV specification are now being
introduced in the market by Intel [18], Neterion [25], NetXen [26], Solarflare [33],
etc. Apart from these, the Crossbow [28] suite from SUN Microsystems talks about
this kind of resource provisioning. However, Crossbow is a software stack over a
standard IOV complaint hardware. The results published using any of these prod-
ucts are exciting in terms of the performance achieved. These devices when used
within the prevalent virtualization technologies need to still address the issue of
provisioning QoS controls on the device. Lack of such controls, as illustrated by
the previously described experimental studies, cause performance degradation and
interference that is dependent on the workloads sharing the device.

38 J. Lakshmi and S.K. Nandy

2.5 Enhancement to I/O Virtualization Architecture

The analysis of prevalent commodity virtualization technologies in Sect. 2.3 clearly
highlights the issues that need to be addressed while sharing I/O devices across
independent VMs on multicore virtualized servers. It is also observed that while
para-virtualization offers better performance for the application, emulation is an
alternative for improved consolidation. The goals are seemingly orthogonal since
current technologies build over virtualization unaware I/O devices. The proposed
architecture takes a consolidated perspective of merging these two goals, that of en-
suring application performance without losing out on the device utilization by taking
advantage of virtualization aware I/O devices and rearchitecting the end-to-end vir-
tualization architecture to deliver the benefits. In order to understand the benefits of
the proposed architecture, the Xen-based para-virtualization architecture for I/O de-
vices is taken as the reference model. In the existing Xen virtualization architecture,
analysis of the network packet work-flow highlights following bottlenecks:

• Since the NIC device is shared, the device memory behaves like a common mem-
ory for all the contending VMs accessing the device. One misbehaving VM can
ensure deprivation leading to data loss for another VM.

• The Xen-IDD is the critical section for all the VMs sharing the device. IDD in-
curs processing overheads for every network operation executed on behalf of each
VM. Current IDD implementations do not have any hooks for controlling the
overheads on per VM basis. Lack of such controls leads to performance interfer-
ence in the device sharing VMs.

• Every network packet has to cross the address translation barrier of VMM to IDD
to VM and vice-versa. This happens because of lack of separation of device man-
agement issues from device access issues. Service overheads of this stage-wise
data movement cause drop in effective utilized device bandwidth. In multicore
servers with scarce I/O devices, this would mean having high-bandwidth under-
utilized devices and low-throughput applications on the consolidated server.

To overcome the above-listed drawbacks, the proposed architecture enhances I/O
device virtualization to enable separation of device management from device access.
This is done by building device protection mechanisms into the physical device and
managed by the VMM. As an example, for the case of NIC, the VMM recognizes
the destination VM of an incoming packet by the interrupt raised by the device and
forwards it to the appropriate VM. The VM then processes the packet as it would
do so in the case of nonvirtualized environment. Thus, device access and scheduling
of device communication are managed by the VM that is using it. The identity for
access is managed by the VMM. This eliminates the intermediary VMM/IDD on
the device access path and reduces I/O service time, which improves the application
performance on virtualized servers and also the usable device bandwidth which re-
sults in improved consolidation. In the following subsections we describe the NIC
I/O virtualization architecture, keeping the above goals in mind, and suggest how
the system software layers of the VMM and the GuestOS inside the VM should use
the NIC hardware that is enabled for QoS-based concurrent device access.

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 39

2.5.1 Proposed I/O Virtualization Architecture Description

Figure 2.8 gives a block schematic of the proposed I/O virtualization architecture.
The picture depicts a NIC card that can be housed within a multicore server. The
card has a controller that manages the DMA transfer to and from the device mem-
ory. The standard device memory is now replaced by a partitionable memory sup-
ported with n sets of device registers. A set of m memory partitions, where m ≤ n,

along with device registers, forms the virtual-NICs (vNICs). The device memory
is reconfigurable, i.e., dynamically partitionable, and the VM’s QoS requirements
drive the sizing of the memory partition of a vNIC. The advantage of having a dy-
namically partitionable device memory is that any unused memory can be easily
extended into or reduced from a vNIC in order to support adaptive QoS specifica-
tions. The NIC identifies the destination VM of an arriving packet, based on the
logical device address associated with it. A simple implementation is to allow a sin-
gle physical NIC to support multiple MAC address associations. Each MAC address
then represents a vNIC, and a vNIC request is identified by generating a message-
signaled interrupt (MSI). The number of MAC addresses and interrupts supported
by the controller restricts the number of vNICs that can be exported. Although the
finite number of physical resources on the NIC restricts the number of vNICs that
can be exported, judicious use of native and para-virtualized access to the vNICs,
based on the QoS guarantees a VM needs to honor, can overcome the limitation.
A VM that has to support stringent QoS guarantees can choose to use native ac-
cess to the vNIC, whereas those VMs that are looking for best-effort NIC access
can be allowed para-virtualized access to a vNIC. The VMM can aid in setting up
the appropriate hosting connections based on the requested QoS requirements. The
architecture can be realized with the following enhancements:

Fig. 2.8 NIC architecture
supporting independent
reconfigurable virtual-NICs

40 J. Lakshmi and S.K. Nandy

Virtual-NIC

In order to define vNIC, the physical device should support timesharing in hard-
ware. For a NIC, this can be achieved by using MSI and dynamically partitionable
device memory. These form the basic constructs to define a virtual device on a phys-
ical device as depicted in Fig. 2.8. Each virtual device has a specific logical device
address, like the MAC address in case of NICs, based on which the MSI is routed.
Dedicated DMA channels, a specific set of device registers, and a partition of the
device memory are part of the virtual device interface which is exported to a VM
when it is started. This virtual interface is called the vNIC which forms a restricted
address space on the device for the VM to use and remains in possession of the
VM until it is active or relinquishes the device. The VMM sets up the device page
translation table, mapping the physical device address of the vNIC into the virtual
memory of the importing VM, during the vNIC creation and initialization. The de-
vice page translation table is given read-only access to the VM and hence forms
a significant security provisioning on the device. This prohibits any corrupt device
driver of the VM GuestOs to affect other VMs sharing the device or the VMM itself.
Also, for high-speed NIC devices, the partitionable memory of the vNIC is useful in
setting up large receive and segment offload capabilities specific to each vNIC and
thus customizes the sizing of each vNIC based on the QoS requirements of the VM.

Accessing Virtual-NIC

To access the vNIC, the native device driver hosted inside the VM replaces the IDD
layer. This device driver manipulates the restricted device address space which is
exported through the vNIC interface by the VMM. The VMM identifies and for-
wards the device interrupt to the destination VM. The GuestOS of the VM handles
the I/O access and thus directly accounts for the resource usage it incurs. This elim-
inates the performance interference when the IDD handles multiple VM requests to
a shared device. Also, direct access of vNIC to the VM reduces the service time on
the I/O accesses. This results in better bandwidth utilization. With the vNIC inter-
face, data transfer is handled by the VM. The VM sets up the Rx/Tx descriptor rings
within its address space and makes a request to the VMM for initializing the I/O
page translation table during bootup. The device driver uses this table along with
the device address translation table and does DMA directly into the VM’s address
space.

QoS and Virtual-NIC

The device memory partition acts as a dedicated device buffer for each of the VMs.
With appropriate logic on the NIC card, QoS-specific service level agreements
(SLAs) can be easily implemented on the device that translates to bandwidth re-
strictions and VM-based processing priority. The key is being able to identify the

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 41

incoming packet to the corresponding VM. This is done by the NIC based on the
packet’s associated logical device address. The NIC controller decides on whether
to accept or reject the incoming packet based on the bandwidth specification or the
current free memory available with the destination vNIC of the packet. This gives
a fine-grained control on the incoming traffic and helps reduce the interference ef-
fects. The outbound traffic can be controlled by the VM itself, as is done in the
existing architectures.

Security and Virtual-NIC

Each vNIC is carved out as a device partition, based on the device requirement
specification of the VM. By using appropriate microarchitecture and hardware con-
structs it can be ensured that a VM does not monopolize device usage and cause
denial of service attack to other VMs sharing the device. The architecture allows
for unmodified GuestOS on a VM. Hence the security is verified and built outside
the VM, i.e., within the VMM. Allowing native device driver within the VM for the
vNIC not only enhances the performance but also allows for easy trapping of the
device driver errors by the VMM. This enables for building robust recovery mech-
anisms for the VM. The model also eliminates sharing of the device access path by
allowing direct access to the vNIC by the VM and thereby eliminates the associated
failures [35].

With these constructs, the virtualized NIC is now enabled for carving out secure,
customized vNICs for each VM, based on its QoS requirements, and supports native
device access to the GuestOS of the VM.

2.5.2 Network Packet Work-Flow Using the Virtualized I/O
Architecture

With the proposed I/O device virtualization architecture, each VM gets safe, direct
access to the shared I/O device without having to route the request through the IDD.
Only the device interrupts are routed through the VMM. In Figs. 2.9a and b, the
workflow for network data reception and transmission using the described device
virtualization architecture is depicted. When a packet arrives at the NIC, it deci-
phers the destination address of the packet, checks if it is a valid destination, then
copies the packet into the vNIC’s portion of the device memory and issues DMA
request to the destination VM based on the vNIC’s priority. On completion of the
DMA request, the device raises an interrupt. The VMM intercepts the interrupt,
determines the destination VM, and forwards the interrupt to the VM. The VM’s
device driver then receives the data from the VM specific device descriptor rings
as it would do in the case of nonvirtualized server. In the case of transmission, the
device driver that is resident in GuestOS of the VM does a DMA transfer of the
data directly into the vNIC’s mapped memory and sets the appropriate registers to

42 J. Lakshmi and S.K. Nandy

F
ig

.2
.9

W
or

kfl
ow

of
ne

tw
or

k
I/

O
co

m
m

un
ic

at
io

n
w

ith
im

pr
ov

is
ed

I/
O

de
vi

ce
vi

rt
ua

liz
at

io
n

ar
ch

ite
ct

ur
e

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 43

initiate data transmission. The NIC transmits this data based on the vNICs proper-
ties like speed, bandwidth, and priority. It may be worth noting here that the code
changes to support this architecture in the existing implementation will be minimal.
Each VM can use the native device driver for its vNIC. This device driver is the
standard device driver for the IOV complaint devices with the only difference that
it can only access restricted device address. The device access restrictions in terms
of memory, DMA channels, interrupt line, and device register sets are setup by the
VMM when the VM requests for a virtual device. With the virtual device interface,
the VMM now only has to implement the virtual device interrupts.

2.6 Evaluation of Proposed Architecture

Since the architecture involves the design of a new NIC and a change in both VMM
and the device handling code inside the VM’s GuestOS, evaluation of the archi-
tecture is carried out using simulation based on LQN model of the architecture. In
LQN models, functional components of the architecture workflow are represented
as server entries. Service of each entry is rendered on a resource. End-to-end work-
flow is enacted using entry interactions. The LQN models capture the contention at
the resource or software component using service queues. The reason for choosing
LQN-based modeling is twofold. First, there is a lack of appropriate system simu-
lation tools that allow incorporating design of new hardware along with VMM and
GuestOS changes. Second, LQN models are intuitive queuing models that enable
capturing of the device and software contention and associated serialization in the
end-to-end workflow, right from the application to the device including the inter-
mediate layers of the VM, IDD, and VMM. With appropriate profiling tools, the
LQN models are fairly easy to build and are effective in capturing the causes of
bottlenecks in the access path. For complete details on general description of LQN
modeling and simulation, the reader may refer to [3–5].

2.6.1 LQN Model for the Proposed Architecture

LQN models can be generated based on the network packet receive and transmit
workflows, manually, using the LQNDEF [3] software developed at the RADS lab-
oratory of Carleton University. In the chapter, results generated for the LQN model
corresponding to the httperf benchmark are presented for analysis, since the bottle-
neck issues are prominent for this benchmark. For complete details on the generation
of the LQN models for the httperf benchmark and validation of the models against
experimental data, readers may refer to [29, 30]. Three assumptions are made while
generating the LQN models used for this analysis, namely:

• The service times established at each of the entries constituting the LQN model
are populated based on the service times measured for an http request, instead of

44 J. Lakshmi and S.K. Nandy

a TCP packet. While it is feasible to model packet level contention, the reason
for choosing request level contention was to enable measurement of the model
throughput in terms of the number of satisfied requests. The model validation
results demonstrate that there is no significant loss or gain (<1%) of throughput
because of this.

• The experimental results for httperf benchmark illustrated in Sect. 2.3 are carried
out with varying request rates for a single specified file. In this mode of execution,
the file that is fetched as a reply to each of the http request, remains constant.
Hence the measured service time to process each request remains constant. Also,
for the chosen mode of execution of the httperf benchmark, the arrival request rate
is observed to be uniform. Hence, the service times and arrival rates populated on
the LQN model are modeled as deterministic.

• The service time for all device activities that are assumed to be executed in hard-
ware, in the proposed architecture and modeled as separate entities in the LQN
model, is set to be significantly low (10−10 seconds). For the rest of the software
entries, the service times are derived based on the measurements made for the
nonvirtualized servers. This is justified since the proposed architecture gives na-
tive access to the device from within the VM which is assumed to be running the
same GuestOS as is used for the nonvirtualized server.

In general it is observed that the maximum throughput observed using the LQN
model is higher than the experimental observations. The reason for this is simple.
For every packet received or transmitted in Linux, there are several layers of the net-
work stack that each packet has to pass through. The time taken to traverse this pas-
sage is recorded by the profiler as the service time. In the real system, to match the
difference between the device speed and CPU speed, appropriate memory buffers
(TCP transmit and receive buffers of Linux kernel) are maintained. The sizing of
these buffers affects the observed application throughput. Observed throughputs are
higher for larger buffer sizes. This trend is maintained to the point until the device
can handle the rate of network traffic. Once device saturation occurs, the failure be-
havior usually results in a sudden drop in application throughput. While setting up
the LQN model, the maximum permissible default buffer size was used in the simu-
lator (which is more than three times than what was set on the experimental system).
This is normally the adopted practice since in throughput studies the interest is to
understand the limits of the model for those service times that make the contention
predominant. This gives an idea on the upper bound of application throughput on a
system with maximum possible resources for the service times possible within the
desired architecture. The basic idea is to eliminate buffer size constraint in the simu-
lation environment. While it is true that for the proposed architecture in which native
access to the I/O device is provided, the maximum throughput that can be achieved,
in reality, cannot exceed that of the maximum throughput achieved in the case of
nonvirtualized server, the results observed using simulations are contradictory. This
is because in the simulation environment, the buffer sizes used were much larger
than the experimental system. Hence, to make the comparison fair, normalization
of simulation results for existing architecture is carried out. To normalize, the LQN
model of existing Xen architecture is built, and simulation results are generated.

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 45

These results are verified and validated for correctness with that of observed exper-
imental results. After this, all comparisons for the proposed architecture are made
using the simulation results of the existing architecture rather than the experimental
results.

2.7 Simulation and Results

The proposed architecture is evaluated using the parasrvn simulator of the LQNS
software package [3].The architecture is evaluated for multicore virtualized servers
since the illustrated device sharing dynamics are expected to be pertinent to such
systems. The LQN model built for this study consists of one VMM and two VMs,
and each is pinned to an independent core. In order to compare the performance of
the proposed end-to-end architecture within the simulation environment, validation
of the LQN model for the existing Xen architecture for a multicore server is car-
ried out. Figure 2.10 depicts the results of achievable throughput and server CPU
utilization for a multicore Xen server with two VMs consolidated. The throughput
graph for both the VMs is similar and appears overlapped in the chart. As it can be
noted from Figs. 2.10a and b, in a multicore environment with Xen-IDD, VM1 and
VM2 each pinned to a core, and each VM servicing one httperf stream, the max-
imum throughput, without loss, achievable per stream is 950 requests/s as against
450 requests/s in the case of single core. But, for the maximum throughput, it is
observed that the Xen-IDD, which is hosting the NIC of the server, the CPU uti-
lization saturates. This indicates that further increase in application throughput is
impossible since the processor core serving the Xen-IDD has no computing power
left. Figure 2.11 shows these statistics for a similar situation but with the proposed
I/O virtualization architecture. As one can observe from Fig. 2.11a, the maximum
throughput achievable now per VM increases to 1500 requests/s. This is an increase
of application throughput by about 60%. The total throughput achievable at the NIC,
derived from consolidating the throughput of both the VMs, also increases by 60%
in comparison to what was achieved on the existing Xen architecture.

Also, from Fig. 2.11b it is observed that the CPU utilization of the IDD or the
hypervisor has considerably reduced and remains bounded by an upper limit. The
reason for this behavior is that the NIC is now handling the identity of the packet
destination. Also, in the existing model, bridging software, which routes the packets
to a VM and has a substantial overhead, is eliminated in the proposed architecture.
The effect is a reduction in the processing time that the IDD spends on behalf of
each VM. It is also noticed that since the VMM is now spending almost constant
time on I/O requests on behalf of the VMs, there is an elimination of performance
interference due to varying workloads. This improves the scalability of sharing the
device across VMs. With the proposed architecture, each VM is now accountable
for all the resource consumption, thereby leading to better QoS controls.

The next evaluation of the proposed architecture is for QoS controls on the net-
work bandwidth. Since the architecture is implemented using LQN model, certain

46 J. Lakshmi and S.K. Nandy

Fig. 2.10 Maximum throughput achievable per httperf stream and CPU utilization for existing
Xen architecture on a multicore server hosting two VMs, each servicing one of the httperf stream.
The IDD, VM1, and VM2 are pinned to independent cores

Fig. 2.11 Maximum achievable throughput and CPU utilization charts for a multicore virtualized
server incorporating the proposed I/O virtualization architecture and hosting two VMs, pinned to
different cores, each servicing one httperf stream

modeling assumptions are made to simulate the network bandwidth controls as im-
plemented in the netfilter module of Linux. LQN model is basically a queuing model
wherein any node (also called entry in parasrvn notation) of the queue is described
using three parameters, namely, the arrival rate, the service time, and the think time.
The arrival rate models the rate of input requests at the entry, service time represents
the time the entry takes to process the request before forwarding to the next entry or
replying back to the requesting entry, and think time denotes the time before which
the entry actually services the request. The think time parameter is useful to model
policies like bandwidth restrictions, time-sharing intervals, periodic processing, etc.
The LQN model is basically a directed acyclic graph that captures the complete
workflow. Hence, the arrival rate is set for the source entry and in this case repre-
sents the rate of request arrival at the network interface of the virtualized server.
The service time represents the resource time used for servicing the request by the

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 47

entry of LQN model, and think time is used to model bandwidth restriction. For ex-
ample, to model 250 requests/second bandwidth restriction, the think time derived
is 1/250 seconds. This ensures that the entry will only process 250 requests/second
and anything extra will be queued or dropped. The next parameter to model is the
burst parameter of the bandwidth control mechanism in Linux netfilter module. In
Linux netfilter module, once the bandwidth limit is reached, packet loss occurs. The
bandwidth control mechanism also has a burst parameter that allows for some extra
packet delivery on the channel, over and above that of imposed bandwidth restric-
tion. By setting the burst rate sufficiently low, equivalent to 10 packets, which is
also the minimum that is permissible, it is ensured that the bandwidth control on the
constrained channel is tight. The HTML page that is requested in the experiments re-
quires fourteen packets to complete a successful request. Since there is no feature in
LQN model to associate the burst parameter of netfilter, the QoS experiments were
carried out by setting the burst rate to 10 packets. This ensures that for the request
that exceeds the configured bandwidth, control fails, and the throughput reported
takes into account the desired behavior. Thus, think time setting in LQN model is
more restrictive than the netfilter. However, since the think time value is based on
the deterministic request rate parameter that defines the bandwidth constraint, it still
produces equivalent results, and this has been validated against observed experi-
mental values [29].

The following graphs in Fig. 2.12 depict the effect of not imposing (Fig. 2.12a)
and imposing network bandwidth QoS controls on the incoming stream of VM2
(Fig. 2.12b), in the proposed architecture. The simulations are conducted on a sin-
gle core server to keep the achievable throughput range within reasonable simulation
time. As it can be observed from the graphs of Fig. 2.12a, for the best effort service,
the maximum throughput, without loss, achieved by either of the VMs on the con-
solidated server is equal, indicating a fair share of the resource. The graphs of the
Fig. 2.12b show that, unlike as in the case of existing architectures, the QoS con-
straints, when moved to device level, allow the usage of available bandwidth by the
unconstrained channel. In the figure, VM2 is constrained to allow requests starting
from 150 requests/second to 950 requests/second, and VM1 is unconstrained. Since

Fig. 2.12 Throughput achieved before and after imposing QoS controls on VM2 of the proposed
architecture

48 J. Lakshmi and S.K. Nandy

the NIC is discarding requests to VM2 that are above the specified request rate, VM1
can use the available bandwidth, and hence higher throughput (1500 replies/sec) on
VM1 is achievable. As the bandwidth control on VM2 is relaxed, it is noticed that
the throughput graphs start converging toward each other and finally merge to that
of the best effort case. The bandwidth control on the incoming stream also works to
our advantage on the http traffic, because by discarding the request at the device it-
self, the server and hence the associated resources are spared to respond on requests
that will eventually be dropped because of bandwidth controls. This control on the
device also acts as a strong deterrent for any denial of service type of attacks. The
other observation is that when multiple VMs are sharing the NIC, the maximum
bandwidth achievable on the unconstrained channel is less (<10%) than that which
is achieved by the isolated VM. Further reduction on this loss is possible by apply-
ing channel-based priority and bandwidth control on the outgoing channel of the
constrained VM. The outgoing channel constraints are easily achievable by using
existing mechanisms such as those available in the netfilter module of Linux [34].
The important point to note here is that with faster and higher-bandwidth NIC de-
vices, judicious use of large receive and segment offload buffers can lead to higher
device utilization without compromising the VM’s performance.

2.8 Conclusion

In this chapter, we described how the lack of virtualization awareness in I/O devices
can lead to latency overheads on the I/O path and also cause security vulnerabilities.
In addition to this, the intermixing of device management and data protection is-
sues further increases the latency. This results in reducing the effective usable band-
width of the device. Also, lack of appropriate device-sharing control mechanisms,
at the device level, leads to loss in bandwidth, causes performance interference on
the device sharing VMs, and makes the virtualization software the most vulnerable
component of the consolidated server. To address these issues, I/O device virtualiza-
tion architecture is proposed. The architecture is an extension to the PCI-SIG IOV
specification. The architecture evaluation is done by capturing it as an LQN model
and analyzing using simulation of the model. The simulation results show a utiliza-
tion benefit of about 60%, without enforcing any QoS guarantees or performing any
software optimization on the I/O path. The proposed architecture also improves the
security and scalability of VMs sharing the NIC. It is demonstrated that by moving
the QoS controls to the shared device, the unused bandwidth is made available to
the unconstrained VM, unlike the case in prevalent technologies. Although the eval-
uation is done for para-virtualized systems like Xen, it is reasonable to expect that
the ideas presented would benefit fully virtualized systems like Vmware since the
architecture enables elimination of the common software entity by providing native
device access to the GuestOS of the VM.

Acknowledgements Credits for this work are due to all those unknown reviewers who have
meticulously pointed out deficiencies and improvements over several rounds of reviews and also
to the summer interns who have enthusiastically carried out the numerous experimental work that
helped validate the simulation results.

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 49

Appendix

Layered Queuing Network (LQN) models are the queuing models designed to cap-
ture the interdependencies in layered systems. The complete system is described
by a set of operations carried out over a set of resources. Every operation requires
one or more resources for execution. The LQN model defines an architectural and
resource context for each operation. The architectural context defines the initiating
event for the operation (execution trigger), when the execution should begin (ex-
ecution timing) and when it should complete (completion trigger). Based on the
semantics of the architectural context, the operation uses resources to carry out its
activities, which is defined by its resource context. A resource can be a software en-
tity or a hardware unit involved in actual execution of the operation. Each resource is
associated with a queue with a discipline that enforces the order of resource use by
the tasks. In layered systems, execution of an activity is carried out by a structured
order of operations over resources organized in different layers. An LQN model is
necessarily an acyclic graph of all possible sequences of requests to avoid the issue
of resource deadlocks. LQNs are very intuitive in capturing resource contentions
and thereby the performance implications on a layered system. These models are
quite common in practice for modeling software system performance.

The LQN models used in this chapter to evaluate I/O virtualization architecture
for the httperf benchmark are generated using the software developed at the RADS
Laboratory of Carleton University. Complete details of the software, tools, and the
associated documentation can be found on their website [3].

A short description of the LQN models generated for the proposed I/O virtualiza-
tion architecture and Xen is provided here. The I/O virtualization issues are promi-
nent for the httperf benchmark, and hence LQN models that capture the end-to-end
architecture are generated for analyzing the issues. The diagrams in Figs. 2.13 and
2.14 depict the LQN models generated for a consolidated Xen server and the pro-
posed I/O virtualization architecture, hosting two VMs. The model has two httperf
streams accessing http servers hosted on different VMs. The model captures the
scenario for a multicore system. In these models, each rectangular box represents
the conceptual functional entity that is active in the receive or the transmit path of
the network packet workflows depicted in Fig. 2.9, to complete one httperf request–
reply sequence. To make the LQN model simpler, a few assumptions are made:

1. While in reality every http request is broken into a sequence of packets that are
passed through various layers of OS, on an LQN model it is captured as a single
service request. This allows for throughput measurements on the model in terms
of satisfied http requests. This is the unit of measurement for the httperf bench-
mark. By aggregating contention issues from packet level to request level, the
throughput measurements tend to be optimistic than what is observed in actual
experiments.

2. The service time associated with the transmit/receive operation is consolidated
to represent the sending of all the packets composing the http request. Because
of this assumption, the results of the simulation tend to give upper bounds on

50 J. Lakshmi and S.K. Nandy

Fig. 2.13 Layered Queuing Network Model for end-to-end httperf benchmark on Xen server

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 51

Fig. 2.14 Layered Queuing Network Model for end-to-end httperf benchmark on proposed I/O
virtualized server

52 J. Lakshmi and S.K. Nandy

the achievable throughput when compared to actual implementation. But the de-
viation is well within 10% of the observed values, as reported in [29, 30]. This
makes LQN models very useful in evaluating end-to-end architectures.

3. One element that is incorporated in the LQN model and not shown in the work-
flow is the system timer interrupt using the server element “Timer.” This element
is introduced in the LQN to account for the queuing delays accrued, while the
OS is handling timer interrupts. For generating the service time of the interrupt
handler, a significantly small delay is used. This value is currently set randomly
for want of standard tools to profile kernel procedures.

4. All entries in the LQN model that represent hardware functions are set with a
significantly small delay as the service time.

Further details on generating of the LQN models and validating the models against
experimental data for this benchmark are discussed in [29, 30].

References

1. Goldberg, R.P.: Survey of virtual machine research. IEEE Comput. 7(6), 34–45 (1974)
2. Jones, R.A.: Netperf: a network performance benchmark revision 2.0. Technical Report, In-

formation Networks Division, Hewlett-Packard Company (1993). Available online: http://
ci.nii.ac.jp/naid/10000088072/en/. Cited 30 April 2010

3. RADS Carleton Univ.: Layered Queueing Network Solver software package (1995). Available
online: http://www.sce.carleton.ca/rads/lqns. Cited 30 April 2010

4. Rolia, J.A., Sevcik, K.C.: The method of layers. IEEE Trans. Softw. Eng. 21(8), 689–700
(1995)

5. Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The stochastic rendezvous network
model for performance of synchronous client-server-like distributed software. IEEE Trans.
Comput. 44(1), 20–34 (1995)

6. Kaashoek, M.F., et al.: Application performance and flexibility on exokernel systems. In: 16th
ACM SOSP, pp. 52–65 (1997)

7. Verghese, B., Gupta, A., Rosenblum, M.: Performance isolation: sharing and isolation in
shared-memory multiprocessors. ACM SIGPLAN Not. 19, 181–192 (1998)

8. Mosberger, D., Jin, T.: httperf: a tool for measuring web server performance. In: ACM Work-
shop on Internet Server Performance, pp. 59–67 (1998)

9. Sugerman, J., Venkatachalam, G., Lim, B.: Virtualizing I/O devices on VMware workstation’s
hosted virtual machine monitor. In: Proceedings of the USENIX Annual Technical Confer-
ence, pp. 1–14 (2001)

10. Welsh, M., Culler, D.: Virtualization considered harmful OS design directions for well-
conditioned services. In: Hot Topics in OS 8th Workshop, pp. 139–144 (2001)

11. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: 19th ACM SIGOPS, pp. 164–177 (2003)

12. Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Wareld, A., Williamson, M.: Safe hardware
access with the Xen virtual machine monitor. In: 1st Workshop on OASIS (2004)

13. The Globus Resource Specification Language RSL v1.0 (2004). Available online: http://
www-fp.globus.org/gram/rsl_spec1.html. Cited 30 April 2010

14. Menon, Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing performance
overheads in the Xen virtual machine environment. In: Proceedings of the ACM/USENIX
Conference on Virtual Execution Environments, pp. 13–23 (2005)

15. Vmware (2005) Vmware ESX Server 2—architecture and performance implications (2005).
Available online: http://www.vmware.com/pdf/esx2_performance_implications.pdf. Cited 30
April 2010

http://ci.nii.ac.jp/naid/10000088072/en/
http://ci.nii.ac.jp/naid/10000088072/en/
http://www.sce.carleton.ca/rads/lqns
http://www-fp.globus.org/gram/rsl_spec1.html
http://www-fp.globus.org/gram/rsl_spec1.html
http://www.vmware.com/pdf/esx2_performance_implications.pdf

2 Quality of Service for I/O Workloads in Multicore Virtualized Servers 53

16. Raj, H., Schwan, K.: Implementing a scalable selfvirtualizing network interface on a multi-
core platform. In: Workshop on the Interaction Between Operating Systems and Computer
Architecture (2005)

17. Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing performance isolation across
virtual machines in Xen. Lect. Notes Comput. Sci. 4290, 342–362 (2006)

18. Intel Virtualization Technology for Directed-I/O (2006). Available online: www.intel.com/
technology/itj/2006/v10i3/2-io/7-conclusion.htm. Cited 30 April 2010

19. Liu, J., Huang, W., Abali, B., Panda, D.K.: High performance VMMbypass I/O in virtual
machines. In: Proceedings of the USENIX Annual Technical Conference, pp. 3–3 (2006)

20. Menon, Cox, A.L., Zwaenepoel, W.: Optimizing network virtualization in Xen. In: Proceed-
ings of the USENIX Annual Technical Conference, pp. 2–2 (2006)

21. PCI-SIG IOV Specification (2006). Available online: http://www.pcisig.com/specifications/
iov. Cited 30 April 2010

22. Santos, J.R., Janakiraman, G., Turner, Y., Pratt, I.: Netchannel 2: optimizing network perfor-
mance. In: Xen Summit Talk (2007)

23. Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A.L., Zwaenepoel, W.: Concur-
rent direct network access for virtual machine monitors. In: Proceedings of the International
Symposium on High-Performance Computer Architecture, pp. 306–317 (2007)

24. Nesbit, K.J., Moreto, M., Cazorla, F.J., Ramirez, A., Valero, M., Smith, J.E.: Multicore re-
source management. IEEE Micro 28(3), 6–16 (2008). Special Issue on Interaction of Com-
puter Architecture and Operating System in the Manycore Era

25. Neterion (2008). Available online: http://www.neterion.com/. Cited 30 April 2010
26. Netxen (2008). Available online: http://www.netxen.com/. Cited 30 April 2010
27. Rixner, S.: Breaking the performance barrier: shared I/O in virtualization platforms has come

a long way but performance concerns remain. ACM Queue 6(1), 36 (2008)
28. Sun Microsystems: CrossBow Network Virtualization and Resource Control (2008).

Available online: http://www.opensolaris.org/os/community/networking/crossbow_sunlabs_
ext.pdf. Cited 30 April 2010

29. Lakshmi, J., Nandy, S.K.: Modeling Architecture-OS interactions using layered queuing net-
work models. In: International Conference Proceedings of HPC Asia, pp. 382–389 (2009)

30. Lakshmi, J., Nandy, S.K.: I/O device virtualization in multi-core era, a QoS perspective. In:
Workshop on Grids, Clouds and Virtualization, Conference on Grids and Pervasive Comput-
ing, pp. 128–135 (2009)

31. Kim, H., Lim, H., Jeong, J., Jo, H., Lee, J.: Task-aware virtual machine scheduling for I/O per-
formance. In: Proceedings of ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pp. 101–110 (2009)

32. Weng, C., Wang, Z., Li, M., Lu, X.: The hybrid scheduling framework for virtual machine
systems. In: Proceedings of ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pp. 111–120 (2009)

33. Solarflare Communications (2009). Available online: http://www.solarflare.com/. Cited 30
April 2010

34. Linux Advanced routing and Traffic control HowTo. Available online: http://lartc.org/howto/
index.html. Cited 30 April 2010

35. Lakshmi, J., Nandy, S.K.: I/O virtualization architecture for security. In: IEEE Proceedings of
International Workshop on Virtualization Technology (2010)

http://www.intel.com/technology/itj/2006/v10i3/2-io/7-conclusion.htm
http://www.intel.com/technology/itj/2006/v10i3/2-io/7-conclusion.htm
http://www.pcisig.com/specifications/iov
http://www.pcisig.com/specifications/iov
http://www.neterion.com/
http://www.netxen.com/
http://www.opensolaris.org/os/community/networking/crossbow_sunlabs_ext.pdf
http://www.opensolaris.org/os/community/networking/crossbow_sunlabs_ext.pdf
http://www.solarflare.com/
http://lartc.org/howto/index.html
http://lartc.org/howto/index.html

Chapter 3
Architectures for Enhancing Grid
Infrastructures with Cloud Computing

Eduardo Huedo, Rafael Moreno-Vozmediano,
Rubén S. Montero, and Ignacio M. Llorente

Abstract Grid and Cloud Computing models pursue the same objective of con-
structing large-scale distributed infrastructures, although focusing on complemen-
tary aspects. While grid focuses on federating resources and fostering collabora-
tion, cloud focuses on flexibility and on-demand provisioning of virtualized re-
sources. Due to their complementarity, it is clear that both models, or at least some
of their concepts and techniques, will coexist and cooperate in existing and future
e-infrastructures. This chapter shows how Cloud Computing will help both to over-
come many of the barriers to grid adoption and to enhance the management, func-
tionality, suitability, energy efficiency, and utilization of production grid infrastruc-
tures.

3.1 Introduction

Grid infrastructures offer common APIs and service interfaces that make it possible
to take advantage of distributed resources without having to modify applications for
each site. However, this uniformity unfortunately does not extend to the underlying
computing resources, where users are exposed to significant heterogeneities in the
computing environment, complicating applications and increasing failure rates.

On the other hand, virtualization technologies have matured rapidly over the last
few years, providing a mechanism for offering customized, uniform environments

E. Huedo (�) · R. Moreno-Vozmediano · R.S. Montero · I.M. Llorente
Universidad Complutense de Madrid, 28040 Madrid, Spain
e-mail: ehuedo@fdi.ucm.es

R. Moreno-Vozmediano
e-mail: rmoreno@dacya.ucm.es

R.S. Montero
e-mail: rubensm@dacya.ucm.es

I.M. Llorente
e-mail: llorente@dacya.ucm.es

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_3, © Springer-Verlag London Limited 2011

55

mailto:ehuedo@fdi.ucm.es
mailto:rmoreno@dacya.ucm.es
mailto:rubensm@dacya.ucm.es
mailto:llorente@dacya.ucm.es
http://dx.doi.org/10.1007/978-0-85729-049-6_3

56 E. Huedo et al.

for users. This additional flexibility comes with negligible costs in terms of pro-
cessing power, network bandwidth, and disk I/O in modern systems. Using grid
technologies combined with virtualization will allow the grid to provide users with
a homogeneous computing environment, simplifying applications and reducing fail-
ures.

In parallel with the increasing maturity of virtualization, Cloud Computing tech-
nologies have emerged. These technologies allow users to dynamically allocate
computing resources and to specify the characteristics for the allocated resources.
The fusion of cloud and grid technologies would provide a more dynamic and flex-
ible computing environment for grid application developers.

In computing, a “cloud” usually refers to an “Infrastructure-as-a-Service” (IaaS)
cloud, such as Amazon EC2, where IT infrastructure is deployed in the provider’s
datacenter in the form of Virtual Machines (VM). Cloud computing enables the de-
ployment of an entire IT infrastructure without the associated capital costs, paying
only for the used capacity. This new resource provisioning paradigm has been intro-
duced to better respond to changing computing demands, allowing the increase or
decrease of capacity in order to meet peak or fluctuating service demands.

With the growing popularity of IaaS clouds, an ecosystem of tools and technolo-
gies is emerging that can be used to transform an organization’s existing infrastruc-
ture into a private cloud, so providing a dynamic and flexible private infrastructure
to run virtualized service workloads. Private clouds can also support a hybrid cloud
model by supplementing local infrastructure with computing capacity from an ex-
ternal public cloud. A private/hybrid cloud can allow remote access to its resources
over the Internet using remote interfaces, such as the web service interfaces used in
Amazon EC2, thus making it also a public cloud.

Cloud and virtualization technologies also offer other benefits to administrators
of resource centers, such as the migration of live services for load balancing or the
deployment of redundant servers. Reduced costs for managing resources immedi-
ately benefits users in freeing money for additional computing resources or in having
better user support from administrators.

This chapter shows how cloud technology could enhance existing and future grid
infrastructures. The structure of this chapter is as follows. Section 3.2 introduces
techniques to enhance grid infrastructures with Cloud Computing. In particular, we
envisage the virtualization of grid sites, the delivery of IaaS in grid sites, the cloud
scale-out of grid sites, and the federation of grids and clouds. These approaches will
be explained in Sects. 3.3 to 3.6. Finally, Sect. 3.7 provides some conclusions.

3.2 Grid Infrastructure Enhancement with Cloud Computing

In the last decade we have witnessed the consolidation of several transcontinental
grid infrastructures that have achieved unseen levels of resource sharing. In spite of
this success, current grids suffer from several obstacles that limit their efficiency,
namely:

3 Architectures for Enhancing Grid Infrastructures with Cloud Computing 57

• An increase in the cost and length of the application development and porting
cycle. New applications have to be tested in a great variety of environments where
the developers have limited configuration capabilities.

• A limitation on the effective number of resources available to each application.
Usually, a Virtual Organization (VO) requires a specific software configuration,
so an application can be only executed on those sites that support the associated
VO. Moreover, the resources devoted to each VO within a site are usually static
and cannot be adapted to the VO’s workload.

• An increase in the operational cost of the infrastructure. The deployment, mainte-
nance, and distribution of different configurations requires specialized, time con-
suming, and error prone procedures. Even worse, new organizations joining a grid
infrastructure need to install and configure an ever-growing middleware stack.

Grid infrastructures can overcome these limitations and can be enhanced in sev-
eral ways through the use of Cloud Computing concepts. However, we must keep in
mind that grid technologies, policies, and procedures are the result of many years of
research, development, and operation. Therefore, we should propose evolutionary,
and not revolutionary, steps in the development of better research infrastructures.
The approaches we envision are the following:

• Virtualization of grid sites. The integration of private cloud technologies and ser-
vices, especially virtualization, into existing grid infrastructures would enhance
failover and redundancy solutions, and permit machine migration for flexible load
balancing and energy efficiency. Virtualization of a grid site would also allow the
dynamic provisioning of worker nodes to address the demands of different user
communities. This approach will address several needs from resource providers
in existing grid infrastructures, being fully transparent to grid application commu-
nities, while users would benefit indirectly via the improved stability, reliability,
and robustness of the infrastructure.

• IaaS delivery in grid sites. The provision of infrastructure using cloud-like deliv-
ery paradigms in addition to existing grid services will address the emerging IaaS
cloud-like usage patterns from several user communities. Public cloud interfaces
would provide an alternative access to grid site resources to support the execution
of any application encapsulated in a VM image. The new interfaces will comple-
ment existing grid services, providing a new way to access to the same underlying
grid site infrastructure without replacing the grid functionality. In this case, new
grid user communities and industrial users would benefit from this innovation in
the resource provisioning model of grid sites.

• Cloud scale-out of grid sites. Using hybrid cloud technologies would addition-
ally support “elastic” grid sites able to expand available computing resources in
the local cloud to meet peak demands using remote cloud providers. Again, this
approach will ease capacity planning for resource providers in existing grid in-
frastructures, allowing them a quick reaction to peak loads, and still being fully
transparent to grid application communities. Users would benefit indirectly via
the on-demand increasing capacity of the infrastructure.

58 E. Huedo et al.

• Federation of grids and clouds. Virtual clusters or grids, as well as individual
nodes, can be deployed in public clouds to be accessed from current grid infras-
tructures using a metascheduler or broker. This way, we would have a federated
infrastructure with physical resources statically provisioned (with shared access)
from grids complemented with virtual resources dynamically provisioned (with
exclusive access) from clouds when needed to meet a given SLA (Service Level
Agreement). This technique allows the provision of cloud resources from current
grid infrastructures without any change.

The above approaches, based on cloud and virtualization techniques, would provide
flexibility, energy efficiency, and elasticity to grid sites, and would maximize the
utility of grid resources for existing user communities. The first three approaches
can be seen as a natural evolution of a grid site, first to become a private cloud, then
a public cloud, and finally an hybrid cloud. The fourth approach aims to federate
conventional grid sites and cloud resources. These four approaches will be elabo-
rated more in the next sections.

The RESERVOIR1 and EGEE2 projects are working together to explore how
the institutes providing computing resources to EGEE could benefit from adopting
private and hybrid cloud models to provide resources [17]. In particular, the use of
a cloud-like provisioning model will allow one to easily meet the changing needs
of the grid users, from scaling up services to meeting peak loads and improving
redundancy or to changing the resources provided to run particular applications.
In the context of this collaboration, the StratusLab initiative3 was created, as an
informal collaboration framework, to evaluate the maturity of existing cloud and
virtualization technologies and services to enhance production grid infrastructures,
and to promote the benefits of virtualization and cloud for the grid community [18].

3.3 Virtualization of Grid Sites

The pattern of resource demand of the computing community is strongly variable,
so making quite difficult to estimate the resource demands. Resource providers need
infrastructure solutions, controlled by site administrators, to meet peak demands in
their clusters. The usual grid answer is to share between disciplines to smooth out
the peaks.

Moreover, in order to be responsive to user requests, the grid must be able to
more easily allocate and reallocate its resources. This is currently a problem with
the current grid implementation, constrained by its technological choice. Most grid
users require a carefully setup environment for their applications to run—e.g., oper-
ating system, libraries, applications, or shared file system—which forces the system

1www.reservoir-fp7.eu
2www.eu-egee.org
3www.stratuslab.org

http://www.reservoir-fp7.eu
http://www.eu-egee.org
http://www.stratuslab.org

3 Architectures for Enhancing Grid Infrastructures with Cloud Computing 59

administrator to comply with these requirements in order, for a given VO, to suc-
cessfully run on their resources. In the past, this has also constrained the users to
be conservative in their choices of runtime environment, in order to avoid difficult
negotiations with the resource owners as time goes on.

In any case, due to the heterogeneity in resource configurations, resources are
only useful for a subset of the full user community. Therefore, heterogeneity reduces
the opportunities for sharing because underused resources from one community can-
not be used to meet peak resource demands from another. Moreover, existing grids
suffer from the lack of ability to adapt to the exact requirements of the end-users.
Learning from cloud technologies and virtualization, we can now consider a new
mode of operation, which completely removes the point of friction between users,
looking for a fully customized environment, and administrator, looking for a fully
homogeneous one.

Several alternatives have been explored in the past to solve this. For example,
the SoftEnv project is a software environment configuration system that allows the
users to define the applications and libraries they need [29]. Another common solu-
tion is the use of a custom software stack on top of the existing middleware layer,
usually referred as pilot-jobs. For example, MyCluster creates a Condor or Sun Grid
Engine (SGE) cluster on top of TeraGrid services [31]; and similarly over other mid-
dleware we may cite DIRAC [30], glideinWMS [28], or PanDa [22]. Additionally,
several projects have investigated the partitioning of a distributed infrastructure to
dynamically provide customized independent clusters. For example, COD (Cluster
On Demand) is a cluster management software which dynamically allocates servers
from a common pool to multiple virtual clusters [6].

However, the most promising technology to provide VOs with custom execution
environments is virtualization. The dramatic performance improvements in hyper-
visor technologies made possible to experiment with VMs as basic building blocks
for computational platforms. In fact, several studies reveal that the virtualization
layer has no significant impact on the performance of memory and CPU-intensive
applications for HPC clusters [32, 33] or grids[12].

Virtualization offers an attractive solution since it completely separates the host
machine (under the control of the system administrators of the resource provider)
and the VM running the user operating system. Translated to grid sites, it means that
the system administrators remain in full control of their infrastructure, following
their own update and upgrade schedule, and remaining free to setup their resource
environment as they see fit, as long as they of course comply with the minimum
requirements for running VMs. Meanwhile, grid users are now free to compose
their VMs exactly as they want it. While there are a few constraints on the VMs
depending on the virtualization technology supported, these remain minor compared
to the significant benefit that virtualization offers.

The first works in this area integrated resource management systems with VM
to provide custom execution environments on a per-job basis. For example, Dy-
namic Virtual Clustering and XGE for MOAB and SGE job managers, respectively
[8, 10]. These approaches only overcome the configuration limitation of physical
resources because VMs are bounded to a given resource and only exist during job

60 E. Huedo et al.

execution. A similar approach has been implemented at grid level using the Grid-
Way Metascheduler [26]. GridWay4 allows the definition of an optional phase be-
fore the actual execution phase to perform advanced job configuration routines. In
this phase, a user-defined program (pre-wrapper), executed on the cluster front-end,
checks the availability of the requested VM image in the cluster node, transferring
it from a GridFTP repository if needed. Then, in the execution phase, another pro-
gram (wrapper) is executed on a worker node of the cluster. This program starts
or restores the VM and waits for its activation by periodically probing its services.
When the VM is ready, the program copies all the input files needed to the VM and
executes the user program. When this program exits, output files are copied to the
client host, and the VM is shut down (or suspended to disk to be recovered later).
This strategy does not require additional middleware to be deployed and is not tied
to a given virtualization technology. However, since the underlying local resource
management system is not aware of the nature of the job itself, some of the potential
benefits offered by the virtualization technology (e.g., server consolidation) are not
fully exploited.

More general approaches involve the use of VMs as workload units, which im-
plies the change in paradigm from building grids out of physical resources to vir-
tualized ones. For example, the VIOLIN project proposes a novel alternative to
application-level overlays based on virtual and isolated networks created on top of
an overlay infrastructure. Also, the VMPlant service provides the automated con-
figuration and creation of VMs that can be subsequently be cloned and instanti-
ated to provide homogeneous execution environments across distributed grid re-
sources [15]. On the other hand, the In-VIGO project adds some virtualization lay-
ers to the classical grid model, to enable the creation of dynamic pools of virtual
resources for application-specific grid computing [1]. Finally, several studies have
explored the use of VMs to provide custom (VO-specific) cluster environments for
grid computing. In this case, the clusters are usually completely build up of virtu-
alized resources, as in the Globus Nimbus project [11] or the Virtual Organization
Clusters (VOC) [21].

The virtualization of a grid site using private cloud technologies, as Fig. 3.1
shows, would enable it to meet the changing needs of the users, by adapting and
customizing the infrastructure to offer the services required by different application
communities. This would allow the grid infrastructure to maximize the utility of the
resources, better supporting sharing of resources between communities. For this to
work, the right VM has to be instantiated to run a given grid job. Since the cloud
API already supports the ability to dynamically instantiate a number of VMs, from
an existing store of virtual images, it is possible to manage user-defined virtual im-
ages, once the grid API allows such information to be transmitted from the user to
the resource manager.

Previous works also highlight that the use of virtualization in grid environments
can greatly improve the efficiency, flexibility, and sustainability of current produc-
tions grids. For example, private cloud technologies would also help sites to dynam-

4www.gridway.org

http://www.gridway.org

3 Architectures for Enhancing Grid Infrastructures with Cloud Computing 61

Fig. 3.1 Virtualization of a grid site to address quick deployment of applications

ically consolidate grid services on a lower number of physical resources, reducing
the number of active physical systems and thus the administrative effort, power,
and cooling required. It is worth noting that energy efficiency is a critical issue for
research infrastructures today [3].

Summing up, grids can take advantage of virtualization, not only by extending
the classical benefits of VMs for constructing cluster, e.g., consolidation or rapid
provisioning of resources [9, 20, 23], but also by obtaining grid-specific benefits,
e.g., support to multiple VOs, isolation of workloads, and the encapsulation of ser-
vices [2].

3.4 IaaS Delivery in Grid Sites

Many resource providers are interested in using their physical infrastructure to per-
form other tasks apart from grid service execution, e.g., development of new codes,
teaching, creating an internal computing cluster, etc. Moreover, they would like to
decide the fraction of resources available via the grid. Resource providers need
administrative solutions to easily partition and isolate different clustered services
running on the same infrastructure. In fact some resource providers are deploying
private cloud facilities in order to support various activities, the grid infrastructure
being one of them. The virtualization of the grid site using private cloud technolo-
gies will allow organizations to execute multiple virtualized clustered services on
the same physical cluster, dynamically allocating different capacity to the services.
Because the same physical infrastructure could be shared by different services, pri-

62 E. Huedo et al.

Fig. 3.2 Offering infrastructure as a service

vate cloud computing will increase the number of resources provided by existing
grid sites and reduce administration effort.

Once a grid site is virtualized, as explained in the previous section, the provision
of infrastructure cloud interfaces, as shown on Fig. 3.2, would provide an alternate,
complementary access to grid site resources and would support the execution of any
application encapsulated in a VM image. Using virtualization would increase the
number of users by making the hardware useful to a wider range of applications.
Moreover, this new functionality would reduce the required manpower in applica-
tion porting and would attract the science user communities and industrial users that
have embraced the cloud computing provisioning model.

This will allow grid sites to turn their site into a public cloud. This way, current
and future sites will be equipped with a much more powerful and flexible mean of
giving access to their resources to a wider range of users, while not compromising
important aspects in data centre managements, such as security, traceability, and
auditing.

It is important that this cloud API is introduced in a harmonious way with respect
to current grid APIs. It is also important that current users of the grid find a sensible
migration path to this new way of accessing resources. At the same time, it is equally
important that new users find this cloud API to grid resources as convenient and
straightforward as possible. In other words, this is an opportunity to streamline the
usage of the grid.

Having an infrastructure that combines both technologies allows it to serve the
maximum number of users, including traditional grid users with computational re-
sources to federate, as we will show in Sect. 3.6, and potential new communities
that have financial resources to pay for resource utilization, but no resources of their
own. This flexibility allows users to structure their applications in a way that is

3 Architectures for Enhancing Grid Infrastructures with Cloud Computing 63

most efficient for them without having to deploy separate resources for each type of
infrastructure. It would also allow them to take advantage of commercial providers.

The OpenNebula5 virtual infrastructure manager provides cloud interfaces like
EC2 Query and the OCCI (Open Cloud Computing Interface) standard. Therefore,
grid sites virtualized using this technology as virtual infrastructure manager are
ready to offer IaaS with very little effort.

3.5 Cloud Scale-Out of Grid Sites

Hybrid cloud technologies provide an additional method to deal with peak loads,
enhancing the system administrator’s control over the system. Hybrid cloud com-
puting is also the bridge between existing grid infrastructures and new emerging
commercial and science infrastructures based on the cloud model.

Few studies have explored this hybrid cloud model. For example, the VioCluster
project enables to dynamically adjust the capacity of a computing cluster by shar-
ing resources between peer domains [27]. Also, as we will show later, the Open-
Nebula allows the creation of clusters combining physical, virtualized, and cloud
resources [16]. Finally, important work has already taken place by the open Stra-
tusLab collaboration to evaluate the feasibility of running an entire grid site in the
Amazon cloud [19], dispensing with any local infrastructure.

A grid site can support a VO beyond its physical resource capabilities by scaling-
out to an external cloud provider, such as commercial cloud providers, as it is shown
on Fig. 3.3. While, in the case of a commercial cloud provider, the site would have
to pay for the resources scaled-out, this means that unprecedented flexibility is pro-
vided to grid site administrator. However, control must be put in place to avoid
abuse.

This possibility could have a significant impact in reducing infrastructure expen-
diture since resource owners will no longer have to size their infrastructure for the
worst-case scenario (peak demand) but for average expected demand. This is possi-
ble since the peak demand would simply be scaled-out to third party cloud provider.
Over time, as grid sites could also offer a cloud API, as we explained in the pre-
vious section, they in return might become resource providers allowing other sites
to utilize their excess capacity, if any at a give time. The idea here is that, instead
of interchanging jobs, grid sites would interchange resources, encapsulated in VMs.
Therefore, this model could in time increase the fluidity of resource allocation and
improve resource utilization on a global scale.

Figure 3.4 shows a possible implementation of a hybrid cloud using OpenNebula.
OpenNebula provides a uniform management layer regardless of the underlying vir-
tualization technology. In this way, OpenNebula can be easily integrated with cloud
services by using a specific Amazon EC2 plug-in. The EC2 plug-in then converts
the general requests made by OpenNebula core, such as deploy or shutdown, using
the EC2 API.

5www.opennebula.org

http://www.opennebula.org

64 E. Huedo et al.

Fig. 3.3 Combining a grid site with cloud resources to meet a peak demand

Fig. 3.4 Hybrid cloud with OpenNebula

3.6 Federation of Grids and Clouds

In the recent years there have been a lot of efforts aimed at providing interopera-
tion between grid middlewares to allow the federation of grid infrastructures [24].
This grid interoperation and federation techniques can be also extended to cloud
infrastructures.

A set of nodes, possibly grouped in a virtual cluster or a grid site (as explained
in the previous section), can be deployed in public clouds to be accessed from cur-
rent grid infrastructures using a metascheduler or broker, i.e., using Grid Comput-
ing concepts, creating a federated infrastructure with physical resources from grids

3 Architectures for Enhancing Grid Infrastructures with Cloud Computing 65

Fig. 3.5 Federating grids and clouds

complemented with dynamically provisioned virtual resources from clouds when
needed, for example, to face peak demands or to meet a given SLA (Service Level
Agreement). Grid resources would be shared, while cloud resources would be ex-
clusive, at a given price. This technique allows the provision of cloud resources and
their use from current grid infrastructures without any change.

Some architectures have been proposed for this. For example, the InterGrid sys-
tem uses VMs as building blocks to construct execution environments that span
multiple computing sites [7]. Such environments can be created by deploying VMs
on different types of resources, like local data centers, grid infrastructures or cloud
providers. InterGrid uses OpenNebula as a component for deploying VMs on a lo-
cal infrastructure. Also, Fig. 3.5 sketches an architecture of a grid infrastructure that
can be flexibly built, incorporating new resources temporarily in an automatic fash-
ion to satisfy heavy demands [4]. Moreover, if there is one specific service which
is suffering from the peak demand, the system can decide to increase the number
of nodes prepared to satisfy such a service. As can be seen, this approach is similar
to the cloud scale-out approach presented in the previous section, but now the fed-
eration is based on Grid Computing concepts, instead of hybrid Cloud Computing.
In addition, we think that this architecture is more natural when using commercial
public clouds, since the end user, and not the site administrator, is responsible for
the allocation of virtual resources (and will receive the invoice).

66 E. Huedo et al.

One of the building blocks of the architecture presented in Fig. 3.5 is again
the GridWay Metascheduler. The flexible architecture of this metascheduler allows
the use of adapters (called Middleware Access Drivers, or MADs, in GridWay’s
terminology), that enable access to different production grid infrastructures [14].
Moreover, it also provides SSH adapters, so access to single nodes can be achieved
with decreased overhead, avoiding the need to have installed and configured in the
nodes any grid software as, for instance, the Globus Toolkit. Also, the GridWay
metascheduler features mechanisms to dynamically discover new resources, and
it is able to detect and recover from any of the grid elements failure, outage, or
saturation conditions [13]. Moreover, the metascheduler can handle differences in
latencies and performance of resources.

The principal component of the proposed architecture for dynamic provisioning
is the Service Manager. This component is used to monitor the GridWay Metasched-
uler, and when the load of the system excesses a threshold, detected using heuris-
tics, it is responsible to grow the available grid infrastructure using specific adapters
to access different cloud providers. Of course, this component is also responsible
to shrink the infrastructure when the load decreases. Clearly, resource provision
heuristics should take into account both QoS (Quality of Service) and budget con-
straints [5] of the end user.

Grid infrastructure growth can be accomplished in two ways. The first one is
by requesting a number of single hosts. This corresponds to the use of cloud A in
Fig. 3.5. Therefore, this mode adds one single computing resource to the grid infras-
tructure that will be accessible through SSH to perform job execution, as GridWay
already has such SSH drivers. In this way, machines from cloud providers can be
used out-of-the-box, with little to nonconfiguration needed, since basically SSH ac-
cess is the only requirement.

Another possibility is to deploy a fully virtualized cluster, with a front-end con-
trolling a number of slave nodes. This front-end can then be enrolled to the existing
grid infrastructure, adding its capacity [25]. This corresponds to the use of cloud B
in the figure. In this second model, negotiation with the cloud provider will grant
access to a virtual cluster, accessible through Globus GRAM and controlled by a
local resource manager like, for example, PBS or SGE. This cluster will then be
added to the federated grid infrastructure the same way as any other physical sites.
Future work is planned to enrich the flexibility of the grid infrastructure by remov-
ing the GRAM layer, enabling GridWay to access the cluster by talking directly to
the local resource manager, using the DRMAA (Distributed Resource Management
Application API) standard.

3.7 Conclusions

Cloud Computing has emerged as a very promising paradigm to simplify and im-
prove the management of current IT infrastructures of any kind. Clouds, in their IaaS
form, have opened up avenues in this area to ease the maintenance, operation, and
use of grid sites, and to explore new resource sharing models that could simplify in

3 Architectures for Enhancing Grid Infrastructures with Cloud Computing 67

some cases the porting and development of grid applications. The first works about
the joint use of clouds and grids are exploring two main approaches, namely:

• The use of virtualization and cloud techniques as an effective way to provide
grid users with custom execution environments. So the same grid site can easily
support VOs with different (or even conflicting) configurations. Moreover, grid
sites would benefit from improved flexibility, reliability, and efficiency.

• The access to grid resources in a cloud-way. So, the users will access “raw” com-
puting capacity bypassing the classical grid middleware stack. This approach is
also being considered as a natural way to attract business users to our current
e-infrastructures.

The potential benefits that cloud and virtualization technologies can bring to cur-
rent e-infrastructures require of a common framework that bridge grid and cloud
computing models. Various solutions have been proposed to take advantage of these
new technologies in a grid environment, from its direct application to encapsulate
the execution of each job to the advance provisioning of virtual clusters.

Grid and cloud technologies address fundamentally different aspects of dis-
tributed computing. Grid technology focuses on federation of resources, uniform
APIs, common authorization mechanisms, and sharing of resources while cloud
computing focuses on dynamic, easy access to resources. Grid site management can
be enormously simplified with cloud technologies. But, similarly, cloud resources
can be improved by using the common grid authorization mechanisms and move-
ment of files (like VM images) between resources. Because of these complemen-
tarities, these technologies will coexist for the foreseeable future, and platforms
combining them will offer their users a better service.

Acknowledgements This research was supported by Consejería de Educación de la Comunidad
de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) and Fondo Social Europeo (FSE),
through MEDIANET Research Program S2009/TIC-1468, by Ministerio de Ciencia e Innovación,
through the research grant TIN2009-07146, and by the European Union through the StratusLab
contract number RI-261552.

References

1. Adabala, S., Chadha, V., Chawla, P., et al.: From virtualized resources to virtual computing
grids: the In-VIGO system. Future Gener. Comput. Syst. 21(6), 896–909 (2005)

2. Begin, M.: An EGEE comparative study: grids and clouds—evolution or revolution. Tech.
rep., EGEE-III NA1 (2008). Available at http://edms.cern.ch/file/925013

3. Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q., Pentikousis,
K.: Energy-efficient cloud computing. Comput. J. 53(7), 1045–1051 (2010)

4. Blanco, C.V., Huedo, E., Montero, R.S., Llorente, I.M.: Dynamic provision of computing re-
sources from grid infrastructures and cloud providers. In: Proceedings of the Workshop on
Grids, Clouds and Virtualization, in Conjunction with Grid and Pervasive Computing Confer-
ence (GPC 2009), pp. 113–120. IEEE Computer Society, Los Alamitos (2009)

5. Buyya, R., Murshed, M.M., Abramson, D., Venugopal, S.: Scheduling parameter sweep appli-
cations on global Grids: a deadline and budget constrained cost-time optimization algorithm.
Softw. Pract. Exp. 35(5), 491–512 (2005)

http://edms.cern.ch/file/925013

68 E. Huedo et al.

6. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a
grid site manager. In: Proceedings of the 12th International Symposium on High Performance
Distributed Computing (HPDC 2003) (2003)

7. di Costanzo, A., de Assuncao, M., Buyya, R.: Harnessing cloud technologies for a virtualized
distributed computing infrastructure. IEEE Internet Comput. 13(5), 24–33 (2009)

8. Emeneker, W., Jackson, D., Butikofer, J., Stanzione, D.: Dynamic virtual clustering with Xen
and Moab. In: Proceedings of the Frontiers of High Performance Computing and Networking,
ISPA 2006 Workshops. Lecture Notes in Computer Science, vol. 4331, pp. 440–451. Springer,
Berlin (2006)

9. Emeneker, W., Stanzione, D.: Dynamic virtual clustering. IEEE Cluster (2007)
10. Fallenbeck, N., Picht, H., Smith, M., Freisleben, B.: Xen and the art of cluster scheduling.

In: Proceedings of the 1st International Workshop on Virtualization Technology in Distributed
Computing (VTDC 2006) (2006)

11. Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual clusters
for grid communities. In: Proceedings of the 6th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2006) (2006)

12. Gilbert, L., Tseng, J., Newman, R., Iqbal, S., Pepper, R., Celebioglu, O., Hsieh, J.,
Mashayekhi, V., Cobban, M.: Implications of virtualization on grids for high energy physics
applications. J. Parallel Distrib. Comput. 66(7), 922–930 (2006)

13. Huedo, E., Montero, R.S., Llorente, I.M.: The GridWay framework for adaptive scheduling
and execution on grids. Scalable Comput. Pract. Exp. 6, 1–8 (2005)

14. Huedo, E., Montero, R.S., Llorente, I.M.: A modular meta-scheduling architecture for inter-
facing with pre-WS and WS grid resource management services. Future Gener. Comput. Syst.
23(2), 252–261 (2007)

15. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: VM-Plants: Providing and
managing virtual machine execution environments for grid computing. In: Proceedings of the
2004 ACM/IEEE Conference on Supercomputing (2004)

16. Llorente, I.M., Moreno-Vozmediano, R., Montero, R.S.: Cloud computing for on-demand grid
resource provisioning. In: Proceedings of the High Performance Computing Workshop 2008,
High Speed and Large Scale Scientific Computing. Advances in Parallel Computing, vol. 18,
pp. 177–191. IOS, Amsterdam (2009)

17. Llorente, I.M., Newhouse, S.: Collaboration between the EGEE and RESERVOIR projects.
In: EGEE 2009 Conference (2009)

18. Loomis, C.: StratusLab—enhancing grid infrastructures with cloud computing. In: EGEE
2009 Conference (2009)

19. Loomis, C., Begin, M., Floros, V., Llorente, I.M., Montero, R.S.: Operating a grid site in the
cloud. In: 4th EGEE User Forum/OGF 25 and OGF Europe’s 2nd International Event (2009)

20. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Elastic management of cluster-based
services in the cloud. In: Proceedings of the 1st Workshop on Automated Control for Data-
centers and Clouds (ACDC 2009), in Conjunction with 6th International Conference on Au-
tonomic Computing and Communications (ICAC 2009), pp. 19–24. ACM, New York (2009)

21. Murphy, M., Kagey, B., Fenn, M., Goasguen, S.: Dynamic provisioning of virtual organization
clusters. In: Proceedings of the 9th IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2009) (2009)

22. Nilsson, P.: Experience from a pilot based system for ATLAS. J. Phys. Conf. Ser. 119(6),
062038 (2008)

23. Nishimura, H., Maruyama, N., Matsuoka, S.: Virtual clusters on the fly—fast, scalable, and
flexible installation. In: Proceedings of the 7th IEEE International Symposium on Cluster
Computing and the Grid (CCGRID 2007) (2007)

24. Riedel, M., Laure, E., et al.: Interoperation of world-wide production e-Science infrastruc-
tures. Concurr. Comput. Pract. Exp. 21(8), 961–990 (2009)

25. Rodriguez, M., Tapiador, D., Fontan, J., Huedo, E., Montero, R.S., Llorente, I.M.: Dynamic
provisioning of virtual clusters for grid computing. In: Proceedings of the 3rd Workshop on

3 Architectures for Enhancing Grid Infrastructures with Cloud Computing 69

Virtualization in High-Performance Cluster and Grid Computing (VHPC 2008), in Conjunc-
tion with Euro-Par 2008. Lecture Notes in Computer Science, vol. 5415, pp. 23–32. Springer,
Berlin (2009)

26. Rubio-Montero, A., Huedo, E., Montero, R., Llorente, I.: Management of virtual machines
on Globus Grids using GridWay. In: High Performance Grid Computing Workshop (HPGC
2007), in Conjunction with 21th International Parallel and Distributed Processing Symposium
(IPDPS 2007), pp. 1–7 (2007)

27. Ruth, P., McGachey, P., Xu, D.: Viocluster: virtualization for dynamic computational domains.
In: 2005 IEEE International Conference on Cluster Computing (2005)

28. Sfiligoi, I.: glideinWMS—a generic pilot-based workload management system. J. Phys. Conf.
Ser. 119(6), 062,044 (2008)

29. Teragrid User Support: Managing Your Software Environment. Available at https://www.
teragrid.org/web/user-support/environment. Accessed April 2010

30. Tsaregorodtsev, A., Garonne, V., Stokes-Rees, I.: DIRAC: a scalable lightweight architecture
for high throughput computing. In: Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing (GRID’04), pp. 19–25 (2004)

31. Walker, E., Gardner, J.P., Litvin, V., Turner, E.: Creating personal adaptive clusters for man-
aging scientific jobs in a distributed computing environment. In: Proceedings of the IEEE
Workshop on Challenges of Large Applications in Distributed Environments (CLADE 2006)
(2006)

32. Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of paravirtualized
memory hierarchy on linear algebra computational kernels and software. In: Proceedings of
the High Performance Distributed Computing (HPDC) (2008)

33. Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Paravirtualization for HPC systems. In: Pro-
ceedings of the Workshop on XEN in HPC Cluster and Grid Computing Environments
(XHPC), in Conjunction with International Symposium on Parallel and Distributed Processing
and Application (ISPA 2006) (2006)

https://www.teragrid.org/web/user-support/environment
https://www.teragrid.org/web/user-support/environment

Chapter 4
Scientific Workflows in the Cloud

Gideon Juve and Ewa Deelman

Abstract The development of cloud computing has generated significant interest
in the scientific computing community. In this chapter we consider the impact of
cloud computing on scientific workflow applications. We examine the benefits and
drawbacks of cloud computing for workflows, and argue that the primary benefit of
cloud computing is not the economic model it promotes, but rather the technologies
it employs and how they enable new features for workflow applications. We describe
how clouds can be configured to execute workflow tasks and present a case study
that examines the performance and cost of three typical workflow applications on
Amazon EC2. Finally, we identify several areas in which existing clouds can be
improved and discuss the future of workflows in the cloud.

4.1 Introduction

In this chapter we consider the use of cloud computing for scientific workflow appli-
cations. Workflows are coarse-grained parallel applications that consist of a series
of computational tasks logically connected by data- and control-flow dependencies.
They are used to combine several different computational processes into a single
coherent whole. Many different types of scientific analysis can be easily expressed
as workflows, and, as a result, they are commonly used to model computations in
many science disciplines [13]. Using workflow technologies, components developed
by different scientists, at different times, for different domains can be used together.
Scientific workflows are used for simulation, data analysis, image processing, and
many other functions.

G. Juve (�) · E. Deelman
University of Southern California, Marina del Rey, CA, USA
e-mail: juve@usc.edu

E. Deelman
e-mail: deelman@isi.edu

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_4, © Springer-Verlag London Limited 2011

71

mailto:juve@usc.edu
mailto:deelman@isi.edu
http://dx.doi.org/10.1007/978-0-85729-049-6_4

72 G. Juve and E. Deelman

Scientific workflows can range in size from just a few tasks to millions of tasks.
For large workflows, it is often desirable to distribute the tasks across many com-
puters in order to complete the work in a reasonable time. As such, workflows often
involve distributed computing on clusters, grids [18], and other computational in-
frastructures. Recently cloud infrastructures are also being evaluated as an execution
platform for workflows [24, 28].

Cloud computing represents a new way of thinking about how to deploy and
execute scientific workflows. On the one hand, clouds can be thought of as just an-
other platform for executing workflow applications. They support all of the same
techniques for workflow management and execution that have been developed for
clusters and grids. With very little effort a scientist can deploy a workflow execu-
tion environment that mimics the environment they would use on a local cluster or
national grid. On the other hand, clouds also provide several features, such as vir-
tualization, that offer new opportunities for making workflow applications easier to
deploy, manage, and execute. In this chapter we examine those opportunities and
describe how workflows can be deployed in the cloud today.

Many different types of clouds are being developed, both as commercial ventures
and in the academic community. For the purposes of this chapter, we are primarily
interested in Infrastructure as a Service (IaaS) clouds [3] as these are more immedi-
ately useable by workflow applications. Other clouds, such as Platform as a Service
(PaaS) and Software as a Service (SaaS) clouds, may provide additional benefits
for creating, managing, and executing workflow-based computations, but currently
there is a lack of systems developed in this area, and additional research is needed
to determine how such systems can be fruitfully combined with workflow technolo-
gies.

4.2 Workflows in the Cloud

There is some disagreement about what is the killer feature of cloud computing.
For many, especially those in the business community, the attractiveness of cloud
is due to its utility-based computing model—the idea that someone else manages a
set of computational resources and users simply pay to access them. The academic
community, however, has had utility computing for quite a long time in the form
of campus clusters, high-performance computing centers such as the NCSA [37]
and the SDSC [44], and national cyberinfrastructure such as the TeraGrid [48] and
the Open Science Grid [38]. Although the availability of commercial clouds may
have some impact on the economics of large-scale scientific computing, we do not
view economics as the fundamental benefit of cloud computing for science. Instead,
we think that clouds provide a multiplicity of benefits that are more technological
in nature and that these benefits stem, primarily, from the extensive use of service-
oriented architectures and virtualization in clouds. In the following sections we dis-
cuss several aspects of cloud computing that are of particular benefit to workflow
applications.

4 Scientific Workflows in the Cloud 73

4.2.1 Provisioning

In grids and clusters scheduling is based on a best-effort model in which a user spec-
ifies their computation (the number of resources and amount of time required) and
delegates responsibility for allocating resources and scheduling the computation to
a batch scheduler. Requests for resources (jobs) are immediately placed into a queue
and serviced in order, when resources become available, according to the policies of
the scheduler. As a result, jobs often face long, unpredictable queue times, especially
jobs that require large numbers of resources or have long runtimes. The allocation of
resources and binding of jobs to those resources are fundamentally tied together and
out of the user’s control. This is unfortunate for workflows because often the over-
heads of scheduling jobs on these platforms are high, and for a workflow containing
many tasks, the penalty is paid many times, which hurts performance [28].

In clouds the process is reversed. Instead of delegating allocation to the resource
manager, the user directly provisions the resources required and schedules their
computations using a user-controlled scheduler. This provisioning model is ideal for
workflows and other loosely-coupled applications because it enables the application
to allocate a resource once and use it to execute many tasks, which reduces the total
scheduling overhead and can dramatically improve workflow performance [28, 41,
45, 46]. Although in clusters and grids, pilot job systems, such as Condor glide-
ins [13], aim to simulate resource provisioning, they face limitations imposed by
the target systems, for example, the maximum walltime a job is allowed to run on a
resource.

4.2.2 On-Demand

Cloud platforms allocate resources on-demand. Cloud users can request, and expect
to obtain, sufficient resources for their needs at any time. This feature of clouds has
been called the “illusion of infinite resources.” The drawback of this approach is that,
unlike best-effort queuing, it does not provide an opportunity to wait. If sufficient
resources are not available to service a request immediately, then the request fails.

On-demand provisioning allows workflows to be more opportunistic in their
choice of resources. Unlike tightly coupled applications, which need all their re-
sources up-front and would prefer to wait in a queue to ensure priority, a workflow
application can start with only a portion of the total resources desired. The mini-
mum usable resource pool for workflows containing only serial tasks is one pro-
cessor. With on-demand provisioning a workflow can allocate as many resources as
possible and start making progress immediately.

4.2.3 Elasticity

In addition to provisioning resources on-demand, clouds also allow users to return
resources on-demand. This dual capability, called elasticity, is a very useful feature

74 G. Juve and E. Deelman

for workflow applications because it enables workflow systems to easily grow and
shrink the available resource pool as the needs of the workflow change over time.
Common workflow structures such as data distribution and data aggregation can
significantly change the amount of parallelism in a workflow over time [7]. These
changes lead naturally to situations in which it may be profitable to acquire or re-
lease resources to more closely match the needs of the application and ensure that
resources are being fully utilized.

4.2.4 Legacy Applications

Workflow applications frequently consist of a collection of complementary software
components developed at different times for different uses by different people. Part
of the job of a workflow management system is to weave these heterogeneous com-
ponents into a single coherent application. Often this must be done without changing
the components themselves. In some cases no one wants to modify codes that have
been designed and tested many years ago in fear of introducing bugs that may affect
the scientific validity of outputs. This can be challenging depending on the environ-
ment for which the components were developed and the assumptions made by the
developer about the layout of the filesystem. These components are often brittle and
require a specific software environment to execute successfully.

Clouds and their use of virtualization technology may make these legacy codes
much easier to run. Virtualization enables the environment to be customized to suit
the application. Specific operating systems, libraries, and software packages can
be installed, directory structures required by the application can be created, input
data can be copied into specific locations, and complex configurations can be con-
structed. The resulting environment can be bundled up as a virtual machine image
and redeployed on a cloud to run the workflow.

4.2.5 Provenance and Reproducibility

Provenance is the origin and history of an object [8]. In computational science,
provenance refers to the storage of metadata about a computation that can be used
to answer questions about the origins and derivation of data produced by that com-
putation. As such, provenance is the computational equivalent of a lab scientist’s
notebook and is a critical component of reproducibility, the cornerstone of experi-
mental science.

Virtualization is a useful feature for provenance because it allows one to capture
the exact environment that was used to perform a computation, including all of
the software and configuration used in that environment. In previous work [23] we
proposed a provenance model for workflow applications in which virtual machine
images are a critical component. The idea behind this model is that, if a workflow is

4 Scientific Workflows in the Cloud 75

executed using a virtual machine, then the VM image can be stored along with the
provenance of the workflow. Storing the VM image enables the scientist to answer
many important questions about the results of a workflow run such as: What version
of the simulation code was used to produce the data? Which library was used? How
was the software installed and configured? It also enables the scientist to redeploy
the VM image and create exactly the same environment that was used to run the
original experiment. This environment could be used to rerun the experiment, or it
could be modified to run a new experiment. These capabilities are enabled by the
use of virtualization in cloud computing.

4.3 Deploying Workflows in the Cloud

Workflow Management Systems, such as Pegasus WMS [16, 40], plan, execute,
and monitor scientific workflows. Pegasus WMS, which consists of the Pegasus
mapper [14], the DAGMan execution engine [12], and the Condor schedd [19] for
task execution, performs several critical functions. It adapts workflows to the tar-
get execution environment, it manages task execution on distributed resources, it
optimizes workflow performance to reduce time to solution and produce scientific
results faster, it provides reliability during execution so that scientists need not man-
age a potentially large number of failures, and they track data so that it can be easily
located and accessed during and after workflow execution.

An approach to running workflows on the cloud is to build a virtual cluster using
the cloud resources and schedule workflow tasks to that cluster.

4.3.1 Virtual Clusters

Scientific workflows require large quantities of compute cycles to process tasks. In
the cloud these cycles are provided by virtual machines. To achieve the performance
required for large-scale workflows, many virtual machine instances must be used si-
multaneously. These collections of VMs are called “virtual clusters” [10, 17, 32].
The process of deploying and configuring a virtual cluster is known as contextu-
alization [31]. Contextualization involves complex configuration steps that can be
tedious and error-prone to perform manually. To automate this process, software
such as the Nimbus Context Broker [31] can be used. This software gathers infor-
mation about the virtual cluster and uses it to generate configuration files and start
services on cluster VMs.

4.3.2 Resource Management

Having a collection of virtual machines is not sufficient to run a workflow. Addi-
tional software is needed to bind workflow tasks to resources for execution. The

76 G. Juve and E. Deelman

easiest way to do this is to use some off-the-shelf resource management system
such as Condor [35], PBS [5] or Sun Grid Engine [20]. In this way the virtual clus-
ter mimics a traditional computational cluster. A typical virtual cluster is composed
of a virtual machine that acts as a head node to manage the other machines in the
cluster and accept tasks from the workflow management system and a set of worker
nodes that execute tasks. Configuration of the resource manager and registration of
worker nodes with the head node is part of the process of contextualization.

4.3.3 Data Storage

Workflows are loosely coupled parallel applications that consist of a set of discrete
computational tasks logically connected via data- and control-flow dependencies.
Unlike tightly coupled applications in which tasks communicate by sending mes-
sage via the cluster network, workflow tasks typically communicate using files,
where each task produces one or more output files that become input files to other
tasks. These files are passed between tasks either through a shared storage system
or using some file transfer mechanism.

In order to achieve good performance, these storage systems must scale well to
handle data from multiple workflow tasks running in parallel on separate nodes.
When running on HPC systems, workflows can usually make use of a high-
performance, parallel filesystem such as Lustre [36], GPFS [43], or Panasas [27].
In the cloud, workflows can either make use of a cloud storage service, or they can
deploy their own shared filesystem. To use a cloud storage service, the workflow
management system would likely need to change the way it manages data. For ex-
ample, to use Amazon S3 [1] a workflow task needs to fetch input data from S3 to
a local disk, perform its computation, then transfer output data from the local disk
back to S3. Making multiple copies in this way can reduce workflow performance.
Another alternative would be to deploy a filesystem in the cloud that could be used
by the workflow. For example, in Amazon EC2 an extra VM can be started to host
an NFS filesystem, and worker VMs can mount that filesystem as a local partition.
If better performance is needed, then several VMs can be started to host a parallel
filesystem such as PVFS [34, 50] or GlusterFS [25].

4.4 Case Study: Scientific Workflows on Amazon EC2

To illustrate how clouds can be used for workflow applications, we present a case
study using Amazon’s EC2 [1] cloud. EC2 is a commercial cloud that exempli-
fies the IaaS model. It provides computational resources in the form of virtual ma-
chine instances, which come in a variety of hardware configurations and are capable
of running several different virtualized operating systems. For comparison, we ran
workflows on both EC2 and NCSA’s Abe cluster [37]. Abe is a typical example of
the resources available to scientists on the national cyberinfrastructure. Running the

4 Scientific Workflows in the Cloud 77

Fig. 4.1 The workflow
management in the context of
the execution environment

workflows on both platforms allows us to compare the performance, features, and
cost of a typical cloud environment to that of a typical grid environment. Figure 4.1
shows the high-level set up.

4.4.1 Applications Tested

Three workflow applications were chosen for this study: an astronomy application
(Montage), a seismology application (Broadband), and a bioinformatics application
(Epigenome). These applications were selected because they cover a wide range of
science domains and resource requirements.

Montage [6] creates science-grade astronomical image mosaics from data col-
lected using telescopes. The size of a Montage workflow (Fig. 4.2) depends upon
the area of the sky (in square degrees) covered by the output mosaic. In our ex-
periments we configured Montage workflows to generate an 8-degree mosaic. The

78 G. Juve and E. Deelman

Fig. 4.2 Montage workflow

resulting workflow contains 10,429 tasks, reads 4.2 GB of input data, and produces
7.9 GB of output data.

Broadband [9] generates and compares seismograms from several high- and low-
frequency earthquake simulation codes. Each Broadband workflow (Fig. 4.3) gen-
erates seismograms for several sources (scenario earthquakes) and sites (geographic
locations). For each (source, site) combination, the workflow runs several high- and
low-frequency earthquake simulations and computes intensity measures of the re-
sulting seismograms. In our experiments we used four sources and five sites to gen-
erate a workflow containing 320 tasks that reads 6 GB of input data and writes
160 MB of output data.

Epigenome [30] maps short DNA segments collected using high-throughput gene
sequencing machines to a previously constructed reference genome using the MAQ
software [33]. The workflow (Fig. 4.4) splits several input segment files into small
chunks, reformats and converts the chunks, maps the chunks to a reference genome,

4 Scientific Workflows in the Cloud 79

Fig. 4.3 Broadband workflow

Fig. 4.4 Epigenome
workflow

merges the mapped sequences into a single output map, and computes the sequence
density for each location of interest in the reference genome. The workflow used in
our experiments maps human DNA sequences to a reference chromosome 21. The

80 G. Juve and E. Deelman

workflow contains 81 tasks, reads 1.8 GB of input data, and produces 300 MB of
output data.

4.4.2 Software

All workflows were planned and executed using the Pegasus WMS. Pegasus is
used to transform abstract, resource-independent workflow descriptions into con-
crete, platform-specific execution plans. These plans are executed using DAGMan
to track dependencies and release tasks as they become ready, and Condor schedd
to run tasks on the available resources.

4.4.3 Hardware

EC2 provides resources with various hardware configurations. Table 4.1 compares
the resource types used for the experiments. It lists five resource types from EC2
(m1.* and c1.*) and two resource types from Abe (abe.local and abe.lustre). There
are several noteworthy details about the resources shown. First, although there is
actually only one type of Abe node, there are two types listed in the table: abe.local
and abe.lustre. The actual hardware used for these types is equivalent; the difference
is in how I/O is handled. The abe.local type uses a local partition for I/O, and the
abe.lustre type uses a Lustre partition for I/O. Using two different names is simply
a notational convenience. Second, in terms of computational capacity, the c1.xlarge
resource type is roughly equivalent to the abe.local resource type with the exception

Table 4.1 Resource types used

Type Arch. CPU Cores Memory Network Storage Price

m1.small 32-bit 2.0–2.6 GHz
Opteron

1/2 1.7 GB 1-Gbps
Ethernet

Local
disk

$0.10/hr

m1.large 64-bit 2.0–2.6 GHz
Opteron

2 7.5 GB 1-Gbps
Ethernet

Local
disk

$0.40/hr

m1.xlarge 64-bit 2.0–2.6 GHz
Opteron

4 15 GB 1-Gbps
Ethernet

Local
disk

$0.80/hr

c1.medium 32-bit 2.33–2.66 GHz
Xeon

2 1.7 GB 1-Gbps
Ethernet

Local
disk

$0.20/hr

c1.xlarge 64-bit 2.33–2.66 GHz
Xeon

8 7.5 GB 1-Gbps
Ethernet

Local
disk

$0.80/hr

abe.local 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps
InfiniBand

Local
disk

N/A

abe.lustre 64-bit 2.33 GHz Xeon 8 8 GB 10-Gbps
InfiniBand

Lustre N/A

4 Scientific Workflows in the Cloud 81

Fig. 4.5 Execution environment

that abe.local has slightly more memory. We use this fact to estimate the virtual-
ization overhead for our test applications on EC2. Third, in rare cases, EC2 assigns
Xeon processors for m1.* instances, but for all of the experiments reported here, the
m1.* instances used were equipped with Opteron processors. The only significance
is that Xeon processors have better floating-point performance than Opteron proces-
sors (4 FLOP/cycle vs. 2 FLOP/cycle). Finally, the m1.small instance type is shown
having core. This is possible because of virtualization. EC2 nodes are configured to
give m1.small instances access to the processor only 50% of the time. This allows a
single processor core to be shared equally between two separate m1.small instances.

4.4.4 Execution Environment

The execution environment was deployed on EC2 as shown in Fig. 4.5 (left). A sub-
mit host running outside the cloud was used to coordinate the workflow, and worker
nodes were started inside the cloud to execute workflow tasks. For the Abe experi-
ments, Globus [47] and Corral [11, 29] were used to deploy Condor glideins [22] as
shown in Fig. 4.5(right). The glideins started Condor daemons on the Abe worker
nodes, which contacted the submit host and were used to execute workflow tasks.
This approach creates an execution environment on Abe that is equivalent to the
EC2 environment.

4.4.5 Storage

Amazon provides several storage services that can be used with EC2. The Simple
Storage Service (S3) [39] is an object-based storage service. It supports PUT, GET,
and DELETE operations for untyped binary objects up to 5 GB in size. The Elas-
tic Block Store (EBS) [2] is a block-based storage service that provides SAN-like
storage volumes up to 1 TB in size. These volumes appear as standard block de-
vices when attached to an EC2 instance and can be formatted with standard UNIX
filesystems. EBS volumes cannot be shared between multiple instances.

82 G. Juve and E. Deelman

In comparison, Abe provides shared storage on a large Lustre [36] parallel
filesystem. This is a very common storage configuration for cluster and grid plat-
forms.

To run workflow applications storage must be allocated for application executa-
bles, input data, intermediate data, and output data. In a typical workflow applica-
tion, executables are preinstalled on the execution site, input data is copied from an
archive to the execution site, and output data is copied from the execution site to an
archive.

For all experiments, executables and input data were prestaged to the execution
site, and output data were not transferred from the execution site. For the EC2 ex-
periments, executables were installed in the VM images, input data was stored on
EBS volumes, and intermediate and output data were written to a local partition. For
the Abe experiments, executables and input data were kept on the Lustre filesystem,
and intermediate and output data were written in some cases to a local partition
(abe.local experiments) and in other cases to the Lustre filesystem (abe.lustre exper-
iments).

EBS was chosen to store input data for a number of reasons. First, storing inputs
in the cloud obviates the need to transfer input data repeatedly. This saves both time
and money because transfers cost more than storage. Second, using EBS avoids the
10-GB limit on VM images, which is too small to include the input data for all
the applications tested. We can access the data as if it were on a local disk without
packaging it in the VM image. A simple experiment using the disk copy utility
“dd” showed similar performance reading from EBS volumes and the local disk
(74.6 MB/s for local, and 74.2 MB/s for EBS). Finally, using EBS simplifies our
setup by allowing us to reuse the same volume for multiple experiments. When we
need to change instances, we just detach the volume from one instance and reattach
it to another.

4.4.6 Performance Comparison

In this section we compare the performance of the selected workflow applications by
executing them on Abe and EC2. The critical performance metric we are concerned
with is the runtime of the workflow (also known as the makespan), which is the total
amount of wall clock time from the moment the first workflow task is submitted
until the last task completes. The runtimes reported for EC2 do not include the
time required to install and boot the VM, which typically averages between 70 and
90 seconds [26]. Now this is much less if you use EBS to store images, and the
runtimes reported for Abe do not include the time glidein jobs spend waiting in the
queue, which is highly dependent on the current system load. Also, the runtimes
do not include the time required to transfer input and output data (see Table 4.4).
We assume that this time will be variable depending on WAN conditions. A study
of bandwidth to/from Amazon services is presented in [39]. In our experiments we
typically observed bandwidth on the order of 500–1000 KB/s between Amazon’s
East Region datacenter and our submit host in Marina del Rey, CA.

4 Scientific Workflows in the Cloud 83

Fig. 4.6 Runtime
comparison

Table 4.2 Monthly storage
cost Application Volume size Monthly cost

Montage 5 GB $0.66

Broadband 5 GB $0.60

Epigenome 2 GB $0.26

We estimate the virtualization overhead for each application by comparing the
runtime on c1.xlarge with the runtime on abe.local. Measuring the difference in
runtime between these two resource types should provide a good estimate of the
cost of virtualization.

Figure 4.6 shows the runtime of the selected applications using the resource types
shown in Table 4.2. In all cases the m1.small resource type had the worst runtime
by a large margin. This is not surprising given its relatively low capabilities.

For Montage, the best EC2 performance was achieved on the m1.xlarge type.
This is likely due to the fact that m1.xlarge has twice as much memory as the next
best resource type. The extra memory is used by the Linux kernel for the filesystem
buffer cache to reduce the amount of time the application spends waiting for I/O.
This is particularly beneficial for Montage, which is very I/O-intensive. The best
overall performance for Montage was achieved using the abe.lustre configuration,
which was more than twice as fast as abe.local. This large gap suggests that having
a parallel filesystem is a significant advantage for I/O-bound applications like Mon-
tage. The difference in runtime between the c1.xlarge and abe.local experiments
suggests that the virtualization overhead for Montage is less than 8%.

The best overall runtime for Broadband was achieved by using the abe.lustre re-
source type, and the best EC2 runtime was achieved using the c1.xlarge resource
type. This is despite the fact that only six of the eight cores on c1.xlarge and
abe.lustre could be used due to memory limitations. Unlike Montage, the difference
between running Broadband on a relatively slow local disk (abe.local) and running
on the parallel filesystem (abe.lustre) is not as significant. This is attributed to the
lower I/O requirements of Broadband. Broadband performs the worst on m1.small
and c1.medium, which also have the lowest amount memory (1.7 GB). This is be-

84 G. Juve and E. Deelman

cause m1.small has only half a core, and c1.medium can only use one of its two
cores because of memory limitations. The difference between the runtime using
c1.xlarge and the runtime using abe.local was only about 1%. This small difference
suggests a relatively low virtualization penalty for Broadband.

For Epigenome, the best EC2 runtime was achieved using c1.xlarge, and the best
overall runtime was achieved using abe.lustre. The primary factor affecting the per-
formance of Epigenome was the availability of processor cores, with more cores
resulting in a lower runtime. This is expected given that Epigenome is almost en-
tirely CPU-bound. The difference between the abe.lustre and abe.local runtimes was
only about 2%, which is consistent with the fact that Epigenome has relatively low
I/O and is therefore less affected by the parallel filesystem. The difference between
the abe.local and the c1.xlarge runtimes suggests that the virtualization overhead for
this application is around 10%, which is higher than both Montage and Broadband.
This may suggest that virtualization has a larger impact on CPU-bound applications.

Based on these experiments, we believe that the performance of workflows on
EC2 is reasonable given the resources that can be provisioned. Although the EC2
performance was not as good as the performance on Abe, most of the resources
provided by EC2 are also less powerful. In the cases where the resources are similar,
the performance was found to comparable. The EC2 c1.xlarge type, which is nearly
equivalent to abe.local, delivered performance that was nearly the same as abe.local
in our experiments.

For I/O-intensive workflows like Montage, EC2 is at a significant disadvantage
because of the lack of high-performance parallel filesystems. While such a filesys-
tem could conceivably be constructed from the raw components available in EC2,
the cost of deploying such a system would be prohibitive. In addition, because EC2
uses commodity networking equipment, it is unlikely that there would be a signif-
icant advantage in shifting I/O from a local partition to a parallel filesystem across
the network, because the bottleneck would simply shift from the disk to the network
interface. In order to compete performance-wise with Abe for I/O-intensive appli-
cations, Amazon would need to deploy both a parallel filesystem and a high-speed
interconnect.

For memory-intensive applications like Broadband, EC2 can achieve nearly the
same performance as Abe as long as there is more than 1 GB of memory per core.
If there is less, then some cores must sit idle to prevent the system from running out
of memory or swapping. This is not strictly an EC2 problem, the same issue affects
Abe as well.

For CPU-intensive applications like Epigenome, EC2 can deliver comparable
performance given equivalent resources. The virtualization overhead does not seem
to be a significant barrier to performance for such applications. In fact, the virtual-
ization overhead measured for all application less than 10%. This is consistent with
previous studies that show similar virtualization overheads [4, 21, 49]. As such, vir-
tualization does not seem, by itself, to be a significant performance problem for
clouds. As virtualization technologies improve, it is likely that what little overhead
there is will be further reduced or eliminated.

4 Scientific Workflows in the Cloud 85

4.4.7 Cost Analysis

In this section we analyze the cost of running workflow applications in the cloud. We
consider three different cost categories: resource cost, storage cost, and transfer cost.
Resource cost includes charges for the use of VM instances in EC2; storage cost
includes charges for keeping VM images in S3 and input data in EBS; and transfer
cost includes charges for moving input data, output data, and log files between the
submit host and EC2.

Resource Cost

Each of the five resource types Amazon offers is charged at a different hourly rate:
$0.10/hr for m1.small, $0.40/hr for m1.large, $0.80/hr for m1.xlarge, $0.20/hr for
c1.medium, and $0.80/hr for c1.xlarge. Usage is rounded up to the nearest hour, so
any partial hours are charged as full hours.

Figure 4.7 shows the per-workflow resource cost for the applications tested. Al-
though it did not perform the best in any of our experiments, the most cost-effective
instance type was c1.medium, which had the lowest execution cost for all three ap-
plications.

Storage Cost

Storage cost consists of (a) the cost to store VM images in S3 and (b) the cost
of storing input data in EBS. Both S3 and EBS use fixed monthly charges for the
storage of data and variable usage charges for accessing the data. The fixed charges
are $0.15 per GB-month for S3 and $0.10 per GB-month for EBS. The variable
charges are $0.01 per 1,000 PUT operations and $0.01 per 10,000 GET operations
for S3, and $ 0.10 per million I/O operations for EBS. We report the fixed cost per
month, and the total variable cost for all experiments performed.

Fig. 4.7 Resource cost
comparison

86 G. Juve and E. Deelman

We used a 32-bit and a 64-bit VM image for all of the experiments in this paper.
The 32-bit image was 773 MB, and the 64-bit image was 729 MB for a total fixed
cost of $0.22 per month. In addition, there were 4616 GET operations and 2560
PUT operations for a total variable cost of approximately $0.03.

The fixed monthly cost of storing input data for the three applications is shown
in Table 4.2. In addition, there were 3.18 million I/O operations for a total variable
cost of $0.30.

Transfer Cost

In addition to resource and storage charges, Amazon charges $0.10 per GB for trans-
fer into, and $0.17 per GB for transfer out of, the EC2 cloud. Tables 4.3 and 4.4 show
the per-workflow transfer sizes and costs for the three applications studied. Input is
the amount of input data to the workflow, output is the amount of output data, and
logs is the amount of logging data that is recorded for workflow tasks and transferred
back to the submit host. The cost of the protocol used by Condor to communicate
between the submit host and the workers is not included, but it is estimated to be
less than $0.01 per workflow.

The first thing to consider when provisioning resources on EC2 is the tradeoff be-
tween performance and cost. In general, EC2 resources obey the aphorism “you get
what you pay for”—resources that cost more perform better than resources that cost
less. For the applications tested, c1.medium was the most cost-effective resource
type even though it did not have the lowest hourly rate, because the type with the
lowest rate (m1.small) performed so badly.

Another important thing to consider when using EC2 is the tradeoff between stor-
age cost and transfer cost. Users have the option of either (a) transferring input data
for each workflow separately or (b) transferring input data once, storing it in the
cloud, and using the stored data for multiple workflow runs. The choice of which
approach to employ will depend on how many times the data will be used, how long
the data will be stored, and how frequently the data will be accessed. In general,

Table 4.3 Per-workflow
transfer sizes Application Input Output Logs

Montage 4291 MB 7970 MB 40 MB

Broadband 4109 MB 159 MB 5.5 MB

Epigenome 1843 MB 299 MB 3.3 MB

Table 4.4 Per-workflow
transfer costs Application Input Output Logs Total

Montage $0.42 $1.32 <$0.01 $1.75

Broadband $0.40 $0.03 <$0.01 $0.43

Epigenome $0.18 $0.05 <$0.01 $0.23

4 Scientific Workflows in the Cloud 87

storage is more cost-effective for input data that is reused often and accessed fre-
quently, and transfer is more cost-effective if data will be used only once. For the
applications tested in this paper, the monthly cost to store input data is only slightly
more than the cost to transfer it once. Therefore, for these applications, it is usu-
ally more cost-effective to store the input data rather than transfer the data for each
workflow.

Although the cost of transferring input data can be easily amortized by storing
it in the cloud, the cost of transferring output data may be more difficult to reduce.
For many applications, the output data is much smaller than the input data, so the
cost of transferring it out may not be significant. This is the case for Broadband and
Epigenome, for example. For other applications, the large size of output data may be
cost-prohibitive. In Montage, for example, the output is actually larger than the input
and costs nearly as much to transfer as it does to compute. For these applications,
it may be possible to leave the output in the cloud and perform additional analyses
there rather than to transfer it back to the submit host.

In [15] the cost of running 1-, 2-, and 4-degree Montage workflows on EC2 was
studied via simulation. That paper found the lowest total cost of a 1-degree workflow
to be $0.60, a 2-degree to be $2.25, and a 4-degree to be $9.00. In comparison, we
found the total cost of an 8-degree workflow, which is 4 times larger than a 4-degree
workflow, to be approximately $1.25 if data is stored for an entire month and $2.35
if data is transferred. This difference is primarily due to an underestimate of the
performance of EC2 that was used in the simulation, which produced much longer
simulated runtimes.

Finally, the total cost of all the experiments presented in this paper was $149.55.
That includes all charges related to learning to use EC2, creating VM images, and
running test and experimental workflows.

4.5 Challenges

In the experiments above we focused on running a workflow application on a single
multicore virtual instance. There are several challenges that need to be addressed
when running workflows on multiple virtual instances. Here we describe the chal-
lenges related to data storage, communications, and configurability.

4.5.1 Lack of Appropriate Storage Systems

Existing workflow systems often rely on parallel and distributed filesystems. These
are required to ensure that tasks landing on any node can access the outputs of pre-
vious tasks that may have executed on another node. It is possible to transfer inputs
and outputs for each task separately; however the repeated movement of data is
highly inefficient and time-consuming. In addition, it may be costly in a commer-
cial cloud that charges by the number of bytes transferred. Commercial clouds often

88 G. Juve and E. Deelman

deploy structured or object-based storage services that can be utilized by workflow
applications. However, these services typically do not provide standard filesystem
interfaces. In order to use these systems, the application codes must either be modi-
fied to interface with the storage services or must be wrapped with additional work-
flow components that know how to do the translation. Another solution is to deploy a
temporary shared filesystem in the cloud as part of a virtual cluster, but the problems
with this solution are that it is complex, potentially costly, and requires an additional
step to ensure that desired outputs are transferred to permanent storage. A better so-
lution would be a permanent, scalable, parallel filesystem similar to what existing
clusters and grids use. The challenge to this approach is that it is not clear how such
a filesystem would be provisioned and shared among different users within a cloud.
In particular, authentication and authorization would be key challenges of such a
system.

4.5.2 Relatively Slow Networks

Most communication in workflows occurs through intermediate files that are written
by one task and read by a subsequent task. In a distributed environment these files
need to be transferred across the network in order for the workflow to make progress.
As such, workflows depend on high-performance networks to achieve good perfor-
mance. This is especially true for data-intensive workflows. Networks that provide
high throughput, but not necessarily low latency, are ideal, however the predominant
networking technology employed by existing commercial clouds is Gigabit Ether-
net. In comparison, many cluster and grid infrastructures provide interconnects that
deliver 10 Gigabit/second or better. In order for clouds to be a viable alternative
to clusters and grids as a platform for workflow applications, they would need to
deploy much faster networks. Making high-performance networking function with
OS-level virtualization should be a top priority for future cloud platforms.

4.5.3 Lack of Tools

Setting up an environment to run workflows in the cloud is a complex endeavor.
There is some work in virtual appliances [42], but those are typically designed for
single nodes and not for clusters of nodes. The Nimbus Context Broker [31] can
be used to construct virtual clusters and is immensely useful for running workflows
in the cloud. More tools are needed to simplify the management of cloud-based
environments.

4.6 Summary and Future Outlook

The benefit of cloud computing for science is not necessarily in its utility comput-
ing and economic aspects, which are not new for academic computing. The benefit

4 Scientific Workflows in the Cloud 89

of clouds is rather in its technological features that stem from service-oriented ar-
chitecture and virtualization. In the area of scientific workflows, clouds have many
important benefits. These benefits include the illusion of infinite resources, lease-
based provisioning, elasticity, support for legacy applications and environments,
provenance and reproducibility, and others.

In our work, we supported the workflow execution on the cloud through the de-
ployment of a Condor-based virtual cluster on top of virtual instance. Workflows can
also be made to run across multiple virtual instances, but additional communicate
of data files need to be supported.

Cloud platforms like Amazon EC2 can be used to execute workflows today, but
in the future much work is needed to bring these platforms up to the performance
level of the grid. This includes developing cloud storage systems that are appropriate
for workflow and other science applications as well as tools to help scientists and
workflow engineers deploy their applications in the cloud.

In the future we will see many new cloud-based solutions for workflow applica-
tions. For example, we will likely see the development of new management tools
that help users run workflows using existing tools in the grid. We may see new
workflow systems that are designed with the specific features of the cloud in mind.
We will see research on how to deploy workflows across grids and clouds. We may
see PaaS and SaaS clouds that are developed exclusively for workflow applications.
For example, a PaaS cloud may provide a user-centered Replica Location Service
(RLS) for locating files in the cloud and outside, a dynamic Network Attached Stor-
age (NAS) service for storing files used and created by workflows, a transformation
catalog service to store and manage application binaries, and a workflow execution
service for managing tasks and dependencies. A SaaS cloud for workflows may pro-
vide an application-specific portal where a user could enter the details of a desired
computation and have the underlying workflow services generate a new workflow
instance, plan and execute the computation, and provide access to the results.

Acknowledgements We acknowledge the contributions of Karan Vahi, Gaurang Mehta, Phil
Maechling, Benjamin P. Berman, and Bruce Berriman. This work was supported by the National
Science Foundation under the SciFlow (CCF-0725332) grant. This research made use of Montage,
funded by the National Aeronautics and Space Administration’s Earth Science Technology Office,
Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between
NASA and the California Institute of Technology.

References

1. Amazon.com: Amazon web services (aws). http://aws.amazon.com
2. Amazon.com: Elastic block store (ebs). http://aws.amazon.com/ebs
3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud computing.
Tech. rep., UC Berkeley (2009)

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: Proceedings of the 19th ACM Symposium
on Operating Systems Principles (2003)

http://aws.amazon.com
http://aws.amazon.com/ebs

90 G. Juve and E. Deelman

5. Bayucan, A., Henderson, R.L., Lesiak, C., Mann, B., Proett, T., Tweten, D.: Portable batch
system: external reference specification. Tech. rep., MRJ Technology Solutions (1999)

6. Berriman, B., Bergou, A., Deelman, E., Good, J., Jacob, J., Katz, D., Kesselman, C., Laity,
A., Singh, G., Su, M.H., Williams, R.: Montage: a grid-enabled image mosaic service for the
NVO. In: Astronomical Data Analysis Software and Systems (ADASS) XIII (2003)

7. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., Vahi, K.: Characterization
of scientific workflows. In: Proceedings of the 3rd Workshop on Workflows in Support of
Large-Scale Science (WORKS’08) (2008)

8. Bruneman, P., Khanna, S., Tan, W.C.: Why and where: a characterization of data provenance.
In: Proceedings of the 8th International Conference on Database Theory (2001)

9. Center, S.C.E.: Community modeling environment. http://www.scec.org/cme/
10. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a

grid site manager. In: 12th IEEE International Symposium on High Performance Distributed
Computing (HPDC’03) (2003)

11. Corral. http://pegasus.isi.edu/corral/latest
12. Dagman (directed acyclic graph manager). http://cs.wisc.edu/condor/dagman
13. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: an overview

of workflow system features and capabilities. Future Gener. Comput. Syst. 25(5), 528–540
(2008)

14. Deelman, E., Livny, M., Mehta, G., Pavlo, A., Singh, G., Su, M.H., Vahi, K., Wenger, R.K.:
Pegasus and DAGMan from Concept to Execution: Mapping Scientific Workflows Onto To-
day’s Cyberinfrastructure, pp. 56–74. IOS, Amsterdam (2008)

15. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the
cloud: the montage example. In: Proceedings of the 2008 ACM/IEEE Conference on Super-
computing (2008)

16. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a framework for mapping
complex scientific workflows onto distributed systems. Sci. Program. 13(3), 219–237 (2005)

17. Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayer, B., Zhang, X.: Virtual clusters
for grid communities. In: Proceedings of the 6th IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06) (2006)

18. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual orga-
nizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)

19. Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.: Condor-G: a computation man-
agement agent for multi-institutional grids. In: 10th International Symposium on High Perfor-
mance Distributed Computing (2001)

20. Gentzsch, W.: Sun grid engine: towards creating a compute power grid. In: Proceedings of the
1st International Symposium on Cluster Computing and the Grid (2001)

21. Gilbert, L., Tseng, J., Newman, R., Iqbal, S., Pepper, R., Celebioglu, O., Hsieh, J., Cobban,
M.: Performance implications of virtualization and hyper-threading on high energy physics
applications in a grid environment. In: Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05) (2005)

22. Glidein. http://www.cs.wisc.edu/condor/glidein
23. Groth, P., Deelman, E., Juve, G., Mehta, G., Berriman, B.: Pipeline-centric provenance

model. In: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Sci-
ence (WORKS’09) (2009)

24. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J.: On the use
of cloud computing for scientific workflows. In: Proceedings of the 3rd International Work-
shop on Scientific Workflows and Business Workflow Standards in e-Science (SWBES’08)
(2008)

25. Inc., G.: Glusterfs. http://www.gluster.org
26. Inc., H.: Cloudstatus. http://www.cloudstatus.com
27. Inc., P.: Panasas. http://www.panasas.com

http://www.scec.org/cme/
http://pegasus.isi.edu/corral/latest
http://cs.wisc.edu/condor/dagman
http://www.cs.wisc.edu/condor/glidein
http://www.gluster.org
http://www.cloudstatus.com
http://www.panasas.com

4 Scientific Workflows in the Cloud 91

28. Juve, G., Deelman, E.: Resource provisioning options for large-scale scientific workflows. In:
Proceedings of the 3rd International Workshop on Scientific Workflows and Business Work-
flow Standards in e-Science (SWBES’08) (2008)

29. Juve, G., Deelman, E., Vahi, K., Mehta, G.: Experiences with resource provisioning for scien-
tific workflows using Corral. Sci. Program. 18(2), 77–92 (2010)

30. Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B.P., Maechling, P.: Scien-
tific workflow applications on Amazon EC2. In: Workshop on Cloud-based Services and Ap-
plications in Conjunction with 5th IEEE International Conference on e-Science (e-Science’09)
(2009)

31. Keahey, K., Freeman, T.: Contextualization: providing one-click virtual clusters. In: Proceed-
ings of the 4th International Conference on eScience (eScience’08) (2008)

32. Kee, Y., Kesselman, C., Nurmi, D., Wolski, R.: Enabling personal clusters on demand for batch
resources using commodity software. In: Proceedings of the IEEE International Symposium
on Parallel and Distributed Processing (IPDPS’08) (2008)

33. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res. 18(11), 1851–1858 (2008)

34. Ligon, W.B., Ross, R.B.: Implementation and performance of a parallel file system for high
performance distributed applications. In: Proceedings of the Fifth IEEE International Sympo-
sium on High Performance Distributed Computing (1996)

35. Litzkow, M., Livny, M., Mutka, M.: Condor—a hunter of idle workstations. In: Proceedings
of the 8th International Conference on Distributed Computing Systems (1988)

36. Microsystems, S.: Lustre. http://www.lustre.org
37. National center for supercomputing applications (ncsa). http://www.ncsa.illinois.edu
38. Open science grid. http://www.opensciencegrid.org
39. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon S3 for science grids: a

viable solution? In: International Workshop on Data-Aware Distributed Computing (2008)
40. Pegasus workflow management system. http://pegasus.isi.edu
41. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde, M.: Falkon: a fast and light-weight task

execution framework. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing
(2007)

42. Sapuntzakis, C., Brumley, D., Chandra, R., Zeldovich, N., Chow, J., Lam, M., Rosenblum,
M.: Virtual appliances for deploying and maintaining software. In: Proceedings of the 17th
USENIX Conference on System Administration (2003)

43. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing clusters. In:
Proceedings of the 1st USENIX Conference on File and Storage Technologies (2002)

44. San Diego Supercomputing Center (sdsc). http://www.sdsc.edu
45. Singh, G., Kesselman, C., Deelman, E.: Performance impact of resource provisioning on

workflows. Tech. rep., University of Southern California, Information Sciences Institute
(2005)

46. Singh, G., Kesselman, C., Deelman, E.: A provisioning model and its comparison with best-
effort for performance-cost optimization in grids. In: Proceedings of the 16th International
Symposium on High Performance Distributed Computing (HPDC’07) (2007)

47. Sotomayor, B., Childers, L.: Globus Toolkit 4 Programming Java Services. Elsevier/Morgan
Kaufmann, Amsterdam (2006)

48. Teragrid. http://www.teragrid.org/
49. Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of paravirtualized

memory hierarchy on linear algebra computational kernels and software. In: Proceedings of
the 17th International Symposium on High Performance Distributed Computing (2008)

50. Yu, W., Vetter, J.S.: Xen-based HPC: a parallel I/O perspective. In: Proceedings of the 8th
IEEE International Symposium on Cluster Computing and the Grid (CCGrid’08) (2008)

http://www.lustre.org
http://www.ncsa.illinois.edu
http://www.opensciencegrid.org
http://pegasus.isi.edu
http://www.sdsc.edu
http://www.teragrid.org/

Chapter 5
Auspice: Automatic Service Planning
in Cloud/Grid Environments

David Chiu and Gagan Agrawal

Abstract Recent scientific advances have fostered a mounting number of services
and data sets available for utilization. These resources, though scattered across dis-
parate locations, are often loosely coupled both semantically and operationally. This
loosely coupled relationship implies the possibility of linking together operations
and data sets to answer queries. This task, generally known as automatic service
composition, therefore abstracts the process of complex scientific workflow plan-
ning from the user. We have been exploring a metadata-driven approach toward
automatic service workflow composition, among other enabling mechanisms, in our
system, Auspice: Automatic Service Planning in Cloud/Grid Environments. In this
paper, we present a complete overview of our system’s unique features and outlooks
for future deployment as the Cloud computing paradigm becomes increasingly em-
inent in enabling scientific computing.

5.1 Introduction

Steady progress in various scientific fields including, but not limited to, geoin-
formatics [22, 29, 30], astronomy [41], bioinformatics [26–28], and high-energy
physics [5], has led to a cornucopia of new data. These scientific data sets are typ-
ically stored in structured, low-level files for a variety of reasons despite the ongo-
ing success in database technologies.1 To store these vast collections of files, Mass

1For instance, a series of scientific observations is easily represented by arrays but not relational
tables.

D. Chiu (�)
School of Engineering and Computer Science, Washington State University, Vancouver,
WA 98686, USA
e-mail: david.chiu@wsu.edu

G. Agrawal
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH
43210, USA
e-mail: agrawal@cse.ohio-state.edu

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_5, © Springer-Verlag London Limited 2011

93

mailto:david.chiu@wsu.edu
mailto:agrawal@cse.ohio-state.edu
http://dx.doi.org/10.1007/978-0-85729-049-6_5

94 D. Chiu and G. Agrawal

Fig. 5.1 Scientific data repositories and services

Storage Systems (MSS) are typically employed. Reliant on voluminous, but slow,
disk/tape storage, MSS systems are distributed over existing networks including
clusters, scientific Data Grids, and more recently, the Cloud [44], in combination
that culminates a “scientific Web.” Figure 5.1 exemplifies this distribution model of
scientific data storage and services.

At the same time, XML [45] emerged, a declarative markup language that allows
common users to describe data sets. Having a accessible means for anyone to invent
and provide data descriptions, metadata were eventually substantiated and standard-
ized across many domains. As a result, metadata have become essential to many of
today’s applications. Because scientific data is often cryptic, the data management
and Web communities have pressed for the coupling of metadata with certain data
sets. The Dublin Core Metadata Initiative, for instance, has instituted a general set of
cross-domain metadata elements (e.g., author, title, date, etc.) [18]. Attuned the im-
portance of metadata, the scientific community also began undertaking tremendous
efforts toward standardizing metadata formats. These efforts produced such formats
as the Content Standard for Digital Geospatial Metadata (CSGDM) [21] and the
Biological Data Profile (BDP) [39]. With a mounting number of reliable scientific
metadata, relevant data sets can be identified and accessed more efficiently in to-
day’s cyberinfrastructures.

Meanwhile, the success of Service-Oriented Architectures (SOA) has ushered
an abundant deployment of interoperable processes/services, access to high-level
utilities, and other compute and storage resources across scientific and geographic
domains. These concrete advancements were instrumental in resurfacing the meta-

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 95

computing framework, now known as the Grid [23], which is aptly named to reflect
the vision of ubiquitous access to pervasive compute resources.

With the Grid’s high availability of distributed data sets and services comes the
nontrivial challenge for scientists and other end-users to manage such information.
For instance, certain information involves execution of several operations, with dis-
parate inputs, in a particular sequence. This process is typically known as service
composition. The Grid computing environment, together with the need to manage
and process scientific data, triggered a resurgence of interest in workflows, which
were originally employed for managing complex business operations. Whereas to-
day’s mainstream scientific workflow systems (e.g., Pegasus [19], Kepler [2], Tri-
ana [38], Taverna [40], and others) have been instrumental in reducing the need
for domain scientists to be familiar with the nuances of large-scale computing. For
instance, most scientific workflow management systems provide high-level user in-
terfaces for planning dependent operations, whereas computing provisions such as
scheduling and resource allocation are hidden. Certainly, a goal for enabling these
service level workflows is to automate their composition while simultaneously hid-
ing such esoteric details as service and data discovery, integration, and scheduling
from the common user.

5.1.1 Our Vision with Auspice

In this chapter, we discuss our contributions with Auspice (Automatic Service Plan-
ning in Cloud/Grid Environments), a metadata-driven service composition system
developed at the Ohio State University. Auspice processes queries through auto-
matic composition and execution of service workflow plans. Auspice is data-driven
in the way that it leverages domain specific metadata to automatically derive loosely
coupled service plans that are semantically sound. Our system also enables Quality
of Service through adaptive service planning, allowing it to scale execution times
and data derivation accuracies to user needs. Auspice also exploits the emergence
of the pay-as-you-go supercomputing infrastructure provisioned via the Cloud, by
offering a flexible intermediate data cache. Our system, shown in Fig. 5.2, comprises
several independent layers, each encapsulated with certain functionalities. We out-
line the system in its entirety and, in the same effort, our research contributions.

The rest of this chapter is organized as follows. We first describe the Auspice
metadata framework (Sect. 5.2) because it is central to our framework. Methods for
planning, QoS handling, and caching are described in Sect. 5.3. Our approach for
keyword querying integration is discussed in Sect. 5.4. A system evaluation was
performed to show the effectiveness of our QoS handling and caching, two of Aus-
pice’s distinguishing features (Sect. 5.5). A discussion of related works is given in
Sect. 5.6, and finally, we conclude in Sect. 5.7.

5.2 Metadata Framework

Auspice’s Semantics Layer in Fig. 5.2 facilitates the metadata functionalities neces-
sary for our automatic service composition algorithm.

96 D. Chiu and G. Agrawal

Fig. 5.2 Auspice system architecture

5.2.1 Capturing Concept Derivation

In designing the framework, our observation is that many scientific fields typi-
cally contain a set of domain-specific concepts, e.g., in geoinformatics: coordinates,
bathymetry (water depth), coast lines, etc. These domain concepts can typically be
derived by the available data sets and services. Users, who have become increas-
ingly goal-oriented, target these concepts in their queries: an engineer might prefer
a system capable of immediately answering

‘‘what is the coast line along coordinate x?’’

rather than having to find and orchestrate the execution of a workflow composing
several operations using files from several potentially disparate data sources. Ab-
stractly, one can envision a “concept derivation” scheme as a means to automati-
cally generate plans, composing the necessary service operations and data sets to
answer queries. That is, a concept c is derived by a service s, whose inputs (x, y, z)

are again substantiated by concepts cx, cy, cz, etc., until a terminal element (either a
service without input or data file) has been reached.

We proposed an ontology to capture these concept derivation relationships: Let
ontology O = (VO,EO) be a directed acyclic graph where its set of vertices, VO ,
comprises a disjoint set of classes: concepts C, services S, and data types, D, i.e.,
VO = (C∪S∪D). Each directed edge (u, v) ∈ EO must denote one of the following
relations:

• (uδc→sv): concept-service derivation. Service u ∈ S used to derive v ∈ C.
• (uδc→dv): concept-data type derivation. Data type u ∈ D used to derive v ∈ C.

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 97

Fig. 5.3 Coast line workflow
example

• (uδs→cv): service-concept derivation. Concept u ∈ C used to derive service
v ∈ S.

Planning a workflow with this structure in place becomes possible as the task
is simplified to depth-first search from the query’s targeted concept node. In the
top half of Fig. 5.3, we show one possible subset of the ontology vis-à-vis with
the coast line target concept.2 Although the abstract workflow is not shown, it can
be easily envisioned by reversing the arrows (depicting derivation dependency) and
removing the intermediate concept nodes. The bottom half of Fig. 5.3 shows the
executable, concrete workflow after some substantiation of the required data (and
query parameters).

5.2.2 Enabling Fast Resource Identification

Although the aforementioned semantics framework can be used to find a concept’s
overall derivation structure, inputs and files specific to the user’s query has yet to

2Other derivation paths may exist within a certain ontology, but for simplicity, we show just one
here.

98 D. Chiu and G. Agrawal

be determined. This is by far the most time-consuming aspect of the planning al-
gorithm. But to reduce its complexity, we apply a metadata indexing scheme for
data sets and services. In a process we call metadata registration, each known file
is indexed by their respective popular identifying concepts extracted from their cor-
responding metadata. For instance, a file in the geographical domain is typically
identified by the time and location that it represents. The general metadata registra-
tion framework allows domain scientists to define rules for the concept’s extraction
from each metadata format and builds a unified index to quickly identify the nec-
essary files for workflow construction. Service metadata registration, although less
crucial since |D| � |S|, is also employed to index their derivation and input needs.

On receiving the above coast line query, we have shown that Auspice can accu-
rately plan the workflow toward its derivation (given a set of known services and
data sets), as well as quickly identifying the necessary files associated with coordi-
nate x. A nuanced discussion of this example within the semantics framework can
also be found in [11].

5.3 Service Workflow Planning

In this section, we begin the discussion of the system’s Planning and Execution
Layer, responsible for automatic service composition, making QoS decisions, and
workflow execution. The ontology described in the previous section is capable of
defining workflows in the recursive form of composite derivations. In the same way,
a workflow w can be defined in our system as follows:

w =

⎧
⎪⎨

⎪⎩

ε,

d ∈ D,

(op,Pop) ∈ S

(1)

such that terminals ε and d ∈ D denote a null workflow and a data instance (file, user
input, intermediate data, etc.) belonging to a specific data type in D, respectively.
Nonterminal (op,Pop) ∈ S is a tuple where op denotes a service operation with a
corresponding parameter list Pop = (p1, . . . , pk) and each pi is itself a workflow.
In other words, a workflow is a tuple that either contains a single data instance or a
service operation whose parameters are, recursively, (sub)workflows.

Our planning algorithm, called workflow enumeration (WFEnum), takes as in-
put the targeted concept, t and Q[. . .], the mapped list of query parameters such that
Q[k] → val|k ∈ C. The planner’s goal is to enumerate all possible service plans that
can be used to somehow derive t with respect to the given Q. Algorithm 1 shows
a condensed version of the WFEnum algorithm originally proposed in [11]. While
the overall algorithm has been reduced here, its basic logic is still conveyed. Faith-
ful to the workflow structure defined in (1), WFEnum generates and returns a list of
possible workflows, W = (w1, . . . ,wm), by first deriving t via any data sets avail-
able (Lines 2–8). Finally, WFEnum searches all service-derived paths (Lines 9–18)

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 99

Algorithm 1 WFEnum(t,Q)
1: W ← ()

2: for all {(t, v) ∈ G|v ∈ D} do
3: //v = d ∈ D

4: F ← σ<Q>(d) //select files w.r.t. Q

5: for all f ∈ F do
6: W ← W ∪ {f }
7: end for
8: end for
9: for all {(t, v) ∈ G|v ∈ S} do

10: //v = (op,Pop) ∈ S

11: Wop ← ()

12: for all p ∈ Pop do
13: Wop ← Wop×WFEnum(p.t,Q)
14: end for
15: for all pm ∈ Wop do
16: W ← W ∪ {(op,pm)}
17: end for
18: end for
19: return W

by composing all services known to derive t . The composition of the services is
driven by a recursive reduction of the concepts pertaining to all of its input param-
eters. Whereas the ontology guides the derivation links (Line 2 for data types and
Line 9 for services), the metadata index, implicit in the algorithm, identifies the files
efficiently (Line 4).

5.3.1 Planning with QoS Adaptivity

Often, there exists multiple ways to derive a given query, using different combina-
tions of data sources and services. Which costs differentiate each workflow, then,
should be determined. In most scientific domains, we are concerned with two Qual-
ities of Service constraints: execution time and the accuracy of results.

In terms of time, it is expected that users may have certain constraints on execu-
tion time. But in heterogeneous networks, such as geographically diverse Grids, ex-
ecution times cannot always be guaranteed. In our earlier work [15], we showed that
Auspice can adapt to heterogeneity in underlying networks with varying bandwidths
by dynamically reducing the complexity of data sets in the workflow. Reducing data
sets, however, introduced a vexing problem of finding the corresponding errors with
respect to the scientific domain. We return to the running coast line query example.
Let us assume that the user now requests that the coast line be returned in some T

amount of time, with a mean error no greater than E meters in length. Now, con-
sider a case where Auspice determined a workflow can be completed in T time by

100 D. Chiu and G. Agrawal

reducing the resolution of some image by α%. The problem becomes finding the re-
lationship between the system accuracy parameter, α, and the domain-specific error,
E, for example, difference in meters.

We studied this effect in [14, 16] and proposed a general approach to automati-
cally assign system-based adaptive parameters, such as an α resolution rate, in order
to still meet the user-based accuracy/error parameters, E. We found that many sci-
entific error models are complex and implemented by read-only algorithms. Clearly,
given some scientific error model σ(α) that estimates E on varying resolution val-
ues it is not always possible to inverse σ for providing a precise α. We proposed
that, given an error constraint E, σ can be iteratively invoked on disparate values
(v1, . . . , vi) until convergence, i.e., E ≈ σ(vi), and trivially, α ≈ vi . We showed,
in [16], that vi can be found via a binary-search approach, and α-convergence is
on the order of microseconds, which is negligible when compared to the overall
planning time.

5.3.2 Flexible Derived Data Caching

As scientific data sets continue to mount, the overall execution times of large-scale
workflows clearly become dominated by computation and network transfer times. In
an effort to reduce execution times, we believe that a traditional approach, caching,
can be applied to the Auspice framework. In [13], we built a hierarchical cache
for intermediate derived workflow data. This cache uses a modified version of Bx -
Trees [33], to index already derived data. Our cache was implemented on a cluster
and was shown to not only scale well to an increasing number of cluster nodes, but
also speed up our queries accordingly.

To bring this idea a step beyond clusters and into today’s Cloud infrastructure [4],
we surmise that technologies developed for Web caching can be employed to build
a flexible hierarchical cache. A Cloud-based cache will be flexible in the sense that
not only can it dynamically allocate Cloud nodes to grow in size, but it should
also shrink to save cost for Cloud usage. We utilize consistent hashing [34], which
has found application in Web proxies, among others. With all forms of hashing, the
dynamic allocation (and deallocation) of nodes causes overhead due to the migration
of indexes to new nodes. Consistent hashing was developed to reduce this overhead
and hence is friendly to dynamic underlying infrastructures such as the Cloud. For
Cloud-use, we proposed an algorithm, Greedy Bucket Allocation (GBA), which
allocates Cloud nodes as a last resort to save costs while managing to cache as many
intermediate data sets as possible [12]. We have shown that on-demand machine
allocation for intermediate data caching within a simulated Cloud not only improves
execution times, but also minimizes the potentials for underutilizing resources (not
incidentally, it also helps reduce the Cloud utilization cost). While our algorithms
were able to scale up resources when needed, the Cloud computing paradigm ushers
in a new dimension in cost optimization. That is, applications should also scale down
to save cost. However, this decision is difficult to make—data and job migration

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 101

costs are high, so down-scaling should only be performed when it is predictable that
potentials for increasing workloads are not imminent.

We implement a cache contraction scheme to merge nodes when query intensities
are lowered. Our scheme is based on a combination of exponential decay and a
temporal sliding window. Because the size of our cache system (number of nodes)
is highly dependent on the frequency of queries during some timespan, we propose
a global cache eviction scheme that captures querying behavior. In our contraction
scheme, we employ a streaming model, where incoming query requests represent
streaming data, and a global view of the most recently queried keys is maintained
in a sliding window. A sliding window, T = (t1, . . . , tm), comprises m time slices
of some fixed real-time length. Each time slice ti associates a set of keys queried
in the duration of that slice. We argue that, as time passes, older unreferenced keys
(i.e., ti nearing tm) should have a lower probability of existing in the cache. As these
less relevant keys become evicted, the system makes room for newer, incoming keys
(i.e., ti nearing t1) and thus capturing temporal locality of the queries.

Cache eviction occurs when a time slice has reached tm+1, and at this time, an
eviction score,

λ(k) =
m∑

i=1

αi−1
∣
∣{k ∈ ti}

∣
∣,

is computed for every key, k, within the expired slice. The ratio α : 0 < α < 1 is a
decay factor, and |{k ∈ ti}| returns the number of times k appears in some slice ti .
Here, α is passive in the sense that a higher value corresponds to a larger amount
of keys that is kept in the system. After λ has been computed for each key in tm+1,
any key whose λ falls below the threshold, Tλ, is evicted from the system. Notice
that α is amortized in the older time slices, in other words, recent queries for k

are rewarded, so k is less likely to be evicted. Clearly, the sliding window eviction
method is sensitive to the values of α and m. A baseline value for Tλ would be αm−1,
which will not allow the system to evict any key if it was queried even just once
in the span of the sliding window. We will show their effects in the experimental
section.

Due to the eviction strategy, a set of cache nodes may eventually become lightly
loaded, which is an opportunity to scale our system down. The nodes’ indices can
be merged, and subsequently, the superfluous node instances can be discarded.

5.4 Keyword Querying

The Querying Layer in Auspice is responsible for decomposing a user’s query into
concepts within the ontology, as well as materializing the concepts with the user’s
given values. Keyword search, without saying, has become a mainstay for common
querying. Albeit that abundant effort has been put into supporting keyword searches
in general unstructured documents, e.g., the Web, the current technologies are quite
excessive in the context of our system. Auspice encompasses domain-specific infor-
mation, a quality generally missing from the Web. Auspice’s knowledge framework,

102 D. Chiu and G. Agrawal

including metadata and the ontology (discussed in the Semantics Layer), can be
employed here to better facilitate keyword queries. We believe that this is the first
keyword-search endeavor into automatic service composition and scientific work-
flow systems.

5.4.1 Keyword-Maximization Query Planning

To support keyword queries, we automatically compose all workflows relevant to the
most number of keywords in the user query, K . We currently support only AND-
style keyword queries. Auspice’s querying algorithm returns all workflow plans, w,
whose concept-derivation graph, ψ(w) (to be discussed later), contains the most
concepts from K , while under the constraints of the user’s query parameters, Q. To
exemplify the algorithms, we prescribe the ontology subset shown in Fig. 5.4 to our
discussion. Furthermore, we interweave the description of the algorithms with the
keyword query example:

‘‘wind coast line CTM image (41.48335,-82.687778)
8/20/2009’’

Here, we note that the given coordinates point to Sandusky, Ohio, a location where
we have abundant data sets.

The data and service metadata registration procedure, discussed previously, al-
lows the user to supply some keywords that describe their data set or the output
of the service. These supplied keywords are used to identify the concepts in which
the new resource derives, and if such a concept does not exist, the user is given an
option to create one in the ontology. As such, each concept c has an associated set
of keywords, Kc . For instance, the concept of elevation might associate Kelevation =

Fig. 5.4 An exemplifying ontology

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 103

{“height”, “elevation”, “DEM”}. The WordNet database [20] was also employed to
expand Kc for the inclusion of each term’s synonyms.

Some terms, however, can only be matched by their patterns. For example,
“13:00” should be mapped to the concept time. Others require further processing.
A coordinate (x, y) is first parsed and assigned concepts independently, (i.e., x ←
longitude and y ← latitude). Because Auspice is currently implemented over the
geospatial domain, only a limited number of patterns are expected. Finally, the last
pattern involves value assignment. In our keyword system, values can be given di-
rectly to concepts using a keyword = value string. That is, the keyword query “water
level (x, y)” is equivalent to “water level latitude = y longitude = x”. Finally, each
query term is matched against this set of terms to identify their corresponding con-
cepts. Indeed, a keyword may correspond with more than one concept. However, to
be discussed next, using the concept-derivation of the keyword concepts, our algo-
rithm prunes all unlikely terms during the workflow planning phase.

Before we describe the workflow enumeration algorithm, WFEnum_key (shown
as Algorithm 2), we introduce the notion of concept derivation graphs (or ψ -
graphs) which is instrumental in WFEnum_key for pruning. ψ -graphs are obtained
as concept-derivation relationships, ψ(c) = (Vψ,Eψ), where c is a concept, from
the ontology. All vertices within ψ(c) denote only concepts, and its edges repre-
sent derivation paths. As an aside, ψ can also be applied on workflows, i.e., ψ(w)

extracts the concept-derivation paths from the services and data sets involved in w.

5.4.2 Planning Algorithm

WFEnum_key’s inputs include ct , which denotes the targeted concept. That is, all
generated workflows w must have a ψ -graph rooted in concept ct . Specifically, only
workflows w whose ψ(w) ⊆ ψ(ct) will be considered for the result set. The next
input, Φ , is a set of required concepts, and every concept in Φ must be included
in the derivation graph of ct . A set of query parameters, Q, is also given to this
algorithm. These would include the coordinates and the date given by the user in our
example query. Q is used to identify the correct files and also as input into services
that require these particular concept values. Finally, the ontology, O , supplies the
algorithm with the derivation graph.

On Lines 2–8, the planning algorithm first considers all data-type derivation pos-
sibilities within the ontology for ct , e.g., (ct δ

c→ddt). All data files are retrieved with
respect to data type dt and the parameters given in Q. Each returned file record, f , is
an independent file-based workflow deriving t . Next, the algorithm handles service-
based derivations. From the ontology O , all (ct δ

c→sst) relations are retrieved. Then
for each service st that derives ct , its parameters must first be recursively planned.
Line 15 thus retrieves all concept derivation edges (st δ

s→ccst) for each of its pa-
rameters. Opportunities for pruning are abundant here. For instance, if the required
set of concepts, Φ , is not included in the ψ -graphs of all st ’s parameters combined,
then st can be pruned because it does not meet the query’s requirements. For ex-
ample, on the bottom left corner of Fig. 5.4, we can imply that another service,

104 D. Chiu and G. Agrawal

Algorithm 2 WFEnum_key(ct , Φ , Q, O)
1: static W

2: for all concept-data derivation edges w.r.t. ct , (ct δ
c→ddt) ∈ EO do

3: # data type dt derives ct ; build on dt

4: F ← σ<Q>(dt) //select files w.r.t. Q

5: for all f ∈ F do
6: W ← W ∪ {f }
7: end for
8: end for
9: # any workflow enumerated must be reachable within Φ

10: for all concept-service derivation edges w.r.t. ct , (ct δ
c→sst) ∈ EO do

11: # service st derives ct ; build on st
12: Wst ← ()

13: # remove target, ct , from requirement set (since we current see it)
14: Φ ← {Φ \ ct }
15: for all service-concept derivation edges w.r.t. st , (st δ

s→ccst) ∈ EO do
16: # prune if elements in Φ do not exist in cst ’s derivation path, that is, the

union of all its parents’ ψ graphs
17: if (Φ ⊆ ⋃

ψ(cst)) then
18: W ′ ← WFEnum_key(cst , Φ ∩ ψ(cst), Q, W , O)
19: if W ′ �= () then
20: Wst ← Wst × W ′
21: W ← W ∪ W ′
22: end if
23: end if
24: end for
25: # construct service invocation plan for each p ∈ Wst , and append to W

26: for all p ∈ Wst do
27: W ← W ∪ {(st ,p)}
28: end for
29: end for
30: return W

img2, also derives the image concept. Assuming that Φ = {shore}, because the ψ -
graphs pertaining to all of img2’s parameters does not account for the elements in
Φ , img2 can be immediately pruned here (Line 17). Otherwise, service st is deemed
promising, and its parameters’ concepts are used as targets to generate workflow
(sub)plans toward the total realization of st . Recalling the workflow’s recursive def-
inition from previously, this step is tantamount to deriving the nonterminal case
where (st , (w1, . . . ,wp)) ∈ S. Finally, whereas the complete plan for st is included
in the result set (Line 27), W , each (sub)plan is also included because they include
some subset of Φ , the required keyword concepts, and therefore could be somewhat
relevant to the user’s query (Line 21).

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 105

Algorithm 3 KMQuery(K , O)
1: R ← () # R will hold the list of derived workflow results
2: QK ← O .mapParams(K)
3: CK ← O .mapConcepts(K \ QK)
4: # compute the power set, P (CK), of CK

5: for all ρ ∈ P (CK), in descending order of |ρ| do
6: # ρ = {c1, . . . , cn}, {c1, . . . , cn−1}, . . . , {c1}
7: # check for reachability within ρ, and find successor if true
8: reachable ← false
9: for all ci ∈ ρ ∧ ¬reachable do

10: if (ρ \ {ci}) ⊆ ψ(ci) then
11: croot ← ci

12: reachable ← true
13: end if
14: end for
15: if reachable then
16: # from ontology, enumerate all plans with croot as target
17: R ← R∪ WFEnum_key(croot, (ρ \ {croot}), QK , O)
18: # prune all subsumed elements from P (CK)

19: for all ρ′ ∈ P (CK) do
20: if ρ′ ⊆ ρ then
21: P (CK) ← P (CK) \ {ρ′}
22: end if
23: end for
24: end if
25: end for
26: return R

With the planning algorithm in place, the natural extension now is to determine
its input from a given list of keywords.

The query planning algorithm, shown in Algorithm 3, simply takes a set of key-
words, K , and the ontology, O , as input, and the resulting list of workflow plans, R,
is returned. First, the set of query parameters, QK , is identified using the concept
pattern mapper on each of the key terms. Because user-issued parameter values are
essentially data, they define a δc→d -type derivation on the concepts to which they
are mapped. Here, (longitudeδc→dx), (latitudeδc→dy), (dateδc→d8/20/2009), can
be identified as a result (Line 2). The remaining concepts from K are also deter-
mined, CK = {wind, shore, image, coastal-terrain-model} (note that “coast” had
been deduced to the concept shore and that “line” had been dropped since it did not
match any concepts in O).

Next (Lines 5–14), the algorithm attempts to plan workflows incorporating all
possible combinations of concepts within CK . The power set, P (CK) is computed
for CK , to contain the set of all subsets of CK . Then, for each subset-element
ρ ∈ P (CK), the algorithm attempts to find the root concept in the derivation graph

106 D. Chiu and G. Agrawal

produced by ρ. For example, when ρ = {shore, image, coastal-terrain-model}, the
root concept is image in Fig. 5.4. However, when ρ = {shore, coastal-terrain-
model}, then croot = shore. But since any workflows produced by the former sub-
sumes any produced by the latter ρ set of concepts, the latter can be pruned (thus
why we loop from descending order of |ρ| on Line 5). In order to perform the root-
concept test, for each concept element ci ∈ ρ, its ψ -graph ψ(ci) is first computed,
and if it consumes all other concepts in ρ, then ci is determined to be the root (recall
that ψ(ci) generates a concept-derivation DAG rooted in ci).

Back to our example, although wind is a valid concept in O , it does not con-
tribute to the derivation of any of the relevant elements. Therefore, when ρ = {wind,
image, shore, coastal-terrain-model}, no plans will be produced because wind is
never reachable regardless of which concepts is considered root. The next ρ, how-
ever, produces {image, shore, coastal-terrain-model}. Here, ψ(image) incorporates
both shore and coastal-terrain-model, and thus, image is determined to be croot. The
inner loop on Line 9 can stop here, because the DAG properties of O does not permit
ψ(shore) or ψ(coastal-terrain-model) to include shore, and therefore neither can be
root for this particular ρ.

When a reachable ρ subset has been determined, the planning method,
WFEnum_key can be invoked (Lines 15–24). Using croot as the targeted with
ρ \ {croot} being the concepts required in the derivation paths toward croot,
WFEnum_key is employed to return all workflow plans. But as we saw in Al-
gorithm 1, WFEnum_key also returns any workflow (sub)plans that were used to
derive the target. That is, although image is the target here, the shore concept would
have to be first derived to substantiate it, and it would thus be included in R as a
separate plan. Due to this redundancy, after WFEnum_key has been invoked, Lines
18–23 prunes the redundant ρ’s from the power set. In our example, every subset
element will be pruned except when ρ = {wind}. Therefore, wind would become
rooted its workflows will likewise be planned separately.

5.4.3 Relevance Ranking

The resulting workflow plans should be ordered by their relevance. Relevance, how-
ever, is a somewhat loose term under our context. We define relevance as a function
of the number of keyword-concepts that appear in each workflow plan. We, for in-
stance, would expect that any workflow rooted in wind be less relevant to the user
than the plans which include significantly more keyword-concepts: shore, image,
etc. Given a workflow plan w and query K , we measure w’s relevance score, as
follows:

r(w,K) = |Vψ(w) ∩ C(K)|
|C(K)| + log(|C(K) \ Vψ(w)| + 1)

.

Recall that Vψ(w) denotes the set of concept vertices in w’s concept derivation
graph, ψ(w). Here, C(K) represents the set of concept nodes mapped from K .

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 107

This equation corresponds to the ratio of the amount of concepts from C(K) that
w captures. The log term in the denominator signifies a slight fuzziness penalty for
each concept in w’s derivation graph that was not specified in K . The motivation for
this penalty is to reward “tighter” workflow plans are that more neatly represented
(and thus, more easily understandable and interpreted by the user). This metric is
inspired by traditional approaches for answering keyword queries over relational
databases [1, 43].

5.4.4 A Case Study

We present a case study of our keyword search functionality in this section. Our
system is run on an Ubuntu Linux machine with a Pentium 4 3.00 GHz Dual Core
with 1 GB of RAM. This work has been a cooperative effort with the Department
of Civil and Environmental Engineering and Geodetic Sciences here at the Ohio
State University. Our collaborators supplied us with various services that they had
developed to process certain types of geospatial data. A set of geospatial data was
also given to us. In all, the ontology used in this experiment consists of 29 concepts,
25 services, 5 data types. The 25 services and 2248 data files were registered to
the ontology based on their accompanying metadata, solely for the purposes of this
experiment. We note that, although the resource size is small, the given is sufficient
for evaluating the functionality of keyword search support. A set of queries, shown
in Table 5.1, are used to evaluate our system.

First, we present the search time of the six queries issued to the system. In this
experiment, we executed the search using two versions of our algorithm. Here, the
search time is the sum of the runtimes for KMQuery and WFEnum_key algorithms.
The first version consists of the a priori pruning logic, and the second version does
not prune until the very end. The results of this experiment are shown in Fig. 5.5,
and as we can see, a typical search executes on the order of several milliseconds,
albeit that the ontology size is quite small.

We can also see that the pruning version results in slightly faster search times in
almost all queries, with the exception of QueryID = 3. It was later verified that this
query does not benefit from pruning with the given services and data sets. In other

Table 5.1 Experimental queries

Query ID Description

1 “coast line CTM 7/8/2003 (41.48335,–82.687778)”

2 “bluff line DEM 7/8/2003 (41.48335,–82.687778)”

3 “(41.48335,–82.687778) 7/8/2003 wind CTM”

4 “waterlevel=174.7 cm water surface 7/8/2003 (41.48335,–82.687778)”

5 “waterlevel (41.48335,–82.687778) 13:00:00 3/3/2009”

6 “land surface change (41.48335,–82.687778) 7/8/2003 7/7/2004”

108 D. Chiu and G. Agrawal

Fig. 5.5 Search time

words, the pruning logic is an overhead for this case. Along the right y-axis, the
result set size is shown. Because the test data set is given by our collaborators, in
addition to the fact that our search algorithm is exhaustive, we can claim (and it was
later verified) that the recall is 100%. Recall by itself, however, is not sufficient to
measuring the effectiveness of the search.

To measure the precision of the result set, we again required the help of our col-
laborators. For each workflow plan w in the result set, the domain experts assigned
a score r ′(w,K) from 0 to 1. The precision for each plan is then measured relative
to the difference of this score to the relevance score r(w,K) assigned by our search
engine. For a result set R, its precision is thus computed,

prec(R,K) = 1

|R|
∑

w∈R

1 − (∣
∣r(w,K) − r ′(w,K)

∣
∣
)

The precision for our queries is plotted in Fig. 5.6. Most of the variance are intro-
duced due to the fact that our system underestimated the relevance of some plans.
Because Query 3 appeared to have performed the worst, we show its results in
Table 5.2. The third query contains five concepts after keyword-concept mapping:
wind, date, longitude, latitude, and coastal-terrain-model. The first five plans enu-
merated captures all five concepts plus “water surface,” which is superfluous to the
keyword query. Therefore, any plans generating a water surface will be slightly pe-
nalized. Note that, while the variance is relatively high when compared with the
user’s expectations, the scores do not affect the user’s expected overall ordering
of the results. Although, it certainly can be posited that other properties, such as
cost/quality of the workflow, can be factored into the relevance calculation.

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 109

Fig. 5.6 Precision of search results

Table 5.2 QueryID 3 results set and precision

Workflow plan r r ′

GetWindVal(GetWaterSurface(getCTMLowRes(CTM42.dat))) 0.943 0.8

GetWindVal(GetWaterSurface(getCTMMedRes(CTM42.dat))) 0.943 0.8

GetWindVal(GetWaterSurface(getCTMHighRes(CTM42.dat))) 0.943 0.8

GetWindVal(GetWaterSurface(CreateFromUrlLowRes(CTM42.dat))) 0.943 0.8

GetWindVal(GetWaterSurface(CreateFromUrlHighRes(CTM42.dat))) 0.943 0.8

getCTMLowRes(CTM42.dat) 0.8 0.3

getCTMMedRes(CTM42.dat) 0.8 0.3

getCTMHighRes(CTM42.dat) 0.8 0.3

CreateFromUrlLowRes(CTM42.dat) 0.8 0.3

CreateFromUrlHighRes(CTM42.dat) 0.8 0.3

CTM42.dat 0.8 0.3

GetWaterSurface(getCTMLowRes(CTM42.dat)) 0.755 0.3

GetWaterSurface(getCTMMedRes(CTM42.dat)) 0.755 0.3

GetWaterSurface(getCTMHighRes(CTM42.dat)) 0.755 0.3

GetWaterSurface(CreateFromUrlLowRes(CTM42.dat)) 0.755 0.3

GetWaterSurface(CreateFromUrlHighRes(CTM42.dat)) 0.755 0.3

5.5 Experimental Results

In this section, we discuss the performance evaluation for two aspects we described
in Sect. 5.3, namely, (i) QoS handling and (ii) the benefits afforded by our caching
framework in an actual cloud environment, particularly in conjunction with elas-

110 D. Chiu and G. Agrawal

ticity available in cloud environments. For both experiments, we use the coast line
extraction query seen throughout this paper. We have evaluated these two features
as we believe they are unique to the Auspice system. Referring back to Fig. 5.3, the
coast line workflow is composed of two services: (1) extractShoreline, which inputs
a water level reading and a coastal terrain model (CTM) data file; (2) The parent
service to extractShoreline is getWaterLevel, which inputs the time and location of
interest from the user query. Whereas the water level service is negligible due to
parallelism, the actual coast line extraction service is time consuming, i.e., CTM
files are quite large.

5.5.1 QoS Handling

In this experiment, we allow the user to specify the amount accuracy they require
and report Auspice’s efforts on meeting them. The execution time of this workflow
can be shortened by sampling the CTM input file. However, as we illustrated in
Sect. 5.3.1, the sampling rate of CTMs can take quite a departure from the domain-
specific accuracies that the users specify. A model may predict actual errors (in
meters) of the extractShoreline service operation on varying CTM sampling rates,
but as for planning, Auspice must inversely determine the sampling rate on the in-
put CTM from this model. Table 5.3 shows Auspice’s efforts toward making these
decisions on a particular CTM file.

The left half of the table shows the correct correspondences between the sam-
pling rate of the CTM (α%) and the physical errors predicted to have been induced
by the loss in resolution. The right half of the table shows Auspice’s suggested α

and the corresponding errors. Seen in the tables’ juxtaposition, Auspice’s automatic
suggestions for α come very close to the ideal values and contribute insignificantly
to the differences in physical errors. Although not shown here, the time taken for

Table 5.3 Auspice suggested
sampling rates Ideal Suggested

α% Error (meters) α% Error (meters)

10 61.1441 10.00 61.1441

20 30.7205 19.93 30.7204

30 20.4803 29.91 20.4798

40 15.3603 39.89 15.3599

50 12.2882 49.87 12.2892

60 10.2402 59.98 10.2392

70 8.7773 69.88 8.7769

80 7.6801 79.90 7.6803

90 6.8268 89.94 6.8266

100 6.1441 100 6.1441

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 111

Fig. 5.7 QoS handling in coast line extraction

suggesting α is on the order of 10−6 seconds. Figure 5.7 displays the total execution
times of the coast line extraction workflow on the user given accuracies (along the
x-axis).

5.5.2 Caching in a Cloud Environment

We employ the Amazon Elastic Compute Cloud (EC2) [3] to support all of our
experiments. Each Cloud node instance runs an Ubuntu Linux image on which our
cache server logic is installed. Each image runs on a Small EC2 Instance, which,
according to Amazon, comprises 1.7 GB of memory, 1 virtual core (equivalent to a
1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor) on a 32-bit platform. In all of
our experiments, the caches are initially cold.

We executed repeated runs of the shoreline extraction query. The baseline execu-
tion time of the composite services, i.e., when executed without any caching, takes
approximately ∼23 seconds to complete. Because waiting for each request to com-
plete over the lifetime of the experiment would take prohibitive amounts of time,
we simulated its execution. The inputs to each shoreline extraction query consist the
desired location and date. We have randomized these inputs over 64K possibilities
for each request. The randomized query requests emulates the worst-case scenario.

The initial experiment evaluates the effects of the cache without node contrac-
tion. In other words, the length of our eviction sliding window is ∞. Under this
configuration, our cache is able to grow as large as it needs to handle the size of
the cache. We run our cache system over static, fixed-node configurations (static-2,
static-4, static-8). We then compare these static versions against our dynamic algo-
rithm, Greedy Bucket Allocation (GBA), which runs over the EC2 public Cloud.

112 D. Chiu and G. Agrawal

Fig. 5.8 Miss rate

We executed the shoreline mashup at a rate of 50 query requests per second
and 255 query requests per second. Figures 5.8a and b display the miss rates over
the span of 800 seconds under these two configurations. Notice that the miss rates
(against the left y-axis) for static-2, static-4, and static-8 converge at relatively high
values somewhat early into the experiment due to capacity being reached, although
this behavior is exposed for static-8 only in Fig. 5.8b. Because we are executing
GBA with an infinite eviction window, we do not encounter this capacity issue. In

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 113

fact, our method continues to improve miss rates beyond the static versions, albeit
requiring more nodes to handle the queries. Toward the end of the run, GBA is
capable of attaining near-zero miss rates.

The node allocation behavior (against the right y-axis) shows that, over the lifes-
pan of this experiment, GBA only employs a fraction of the nodes needed to perform
better than static-8. In fact, an average of �5.557� = 6 nodes is used over the query
rate = 50 experiment and an average of �12.6� = 13 nodes in the query rate = 255
version. This translates to less overall EC2 usage cost per performance over static
allocations. The growth of nodes is also not unexpected, though, at first glance it
appears to be exponential. Node increases are concentrated toward the beginning of
execution because the overall capacity is too small to handle the query rate.

Figures 5.9a and b, which show the respective mean query execution times, cor-
respond directly to the above miss rates. To create these figures, for each second
elapsed in our execution, we averaged the query execution times (over 50 and 255
respectively) and plotted them (against the left y-axis). The speedup provided by the
static versions expectedly flatten somewhat quickly, again, due to the nodes reach-
ing capacity. GBA, on the other hand, performed better, but requiring far less nodes
throughout the length of the experiment.

To show node allocation and migration overhead, in Figs. 5.10a and b, the maxi-
mum query execution time (GBA-max) is displayed for GBA. The spikes in the exe-
cution time expectedly align with EC2 instance allocation which, in our experience,
can take extensive amounts of time. We posit that the demand for node allocation di-
minishes as the experiment proceeds even with high querying rates. But while node
allocation overheads are high, its negative impact on overall speedup is amortized
over the span of the experiment because it is only seldom invoked. Moreover, tech-
niques, such as preloading EC2 instances, can also be used to further minimize this
overhead although these have not been considered in this paper.

Next, we evaluated the sliding window approach of maintaining our cache. Two
separate experiments were devised to show the effectiveness of the sliding window
and to show that our cache is capable of scaling down. Again, we randomize the
query inputs over 64K possibilities. We begin these experiments with a querying
rate of 25/s. Then between 100 and 300 seconds, the querying rate is increased to
60/s, and input possibilities are decreased down to 32K. This emulates a period of
frequent and highly related queries being issued. After 300 seconds into the experi-
ment, the querying rate resumes back to 25/s with 64K possible inputs.

Figures 5.11a and b show the results of this experiment for sliding window sizes
of 50 sec and 100 sec respectively. Specifically, the cache will attempt to main-
tain, with high probability, all records that were queried in the most recent 50 and
100 seconds. The decay α has been fixed at 0.99 for these experiments. The eviction
threshold Tλ is set at the baseline αm−1 ≈ 0.367 to evict any key which had been
only queried within the evicted slice.

As demonstrated by these experiments, our cache adapts to the query intensive
period by lowering mean query execution times. We can also observe that, after the
query intensive period expires at 300 seconds, the sliding window detects the normal
querying rates and removes nodes as they become superfluous (though this is only

114 D. Chiu and G. Agrawal

Fig. 5.9 Mean query times

noticeable in Fig. 5.11b. Here, the nodes do not decrease back down to one because
our contraction algorithm is slightly conservative: Recall that we only contract if
two of the lowest loaded nodes account for less than half the space required to store
their merged cache.

The differences between the two side-by-side figures also imply that the size of
the sliding window is a determinant factor on both performance and cost. Since the

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 115

Fig. 5.10 Max query times for GBA

querying rate and sliding window are so small, this version never requires more than
one node, and it requires less nodes than its counterpart in Fig. 5.11b. However, the
tradeoff is clear in that it cannot reap the benefits of the larger cache afforded by the
longer sliding window. The same experiments were conducted for higher querying
rates to produce Figs. 5.12a and b. We increased the normal querying rate to 50/s
and intensive querying rate to 255/s. As seen in the figures, the same cache elasticity

116 D. Chiu and G. Agrawal

Fig. 5.11 Cache contraction (Normal Query Rate = 25/s, Intensive Rate = 60/s)

behavior can be expected upon these very high rates of querying, showing us some
positive results on scalability. In fact, in terms of performance our system welcomes
higher querying rates, as it populates our cache more frequently within the sliding
window.

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 117

Fig. 5.12 Cache contraction (Normal Query Rate = 50/s, Intensive Rate = 255/s)

5.6 Related Works

Among the first systems to utilize workflows to manage scientific processes is
ZOO [32], which employs an object-oriented language to model the invocation of
processes and the relationships between them. Another notable system, Condor [37],
was originally proposed to harvest the potential of idle CPU cycles. Soon after, de-

118 D. Chiu and G. Agrawal

pendent processes (in the form of directed acyclic graphs) were being scheduled on
Condor systems using DAGMan [17]. Recently, with the onset of the Data Grid,
Condor has been integrated with the Globus Tookit [24] into Condor-G [25]. Pega-
sus [19] creates workflow plans in the form of Condor DAGMan files, which then
uses the DAGMan scheduler for execution.

Many systems currently allow users to guide workflow designs. In Casati et
al.’s eFlow [10], a workflow’s structure is defined by users, but the instantiation
of services within the process is dynamically allocated by the eFlow engine. Sirin
et al. proposed a user interactive composer that provides semi-automatic composi-
tion [42]. In their system, after each time that a particular service is selected for
use in the composition, the user is presented a filtered list of possible choices for
the next step. This filtering process is made possible by associating semantic data
with each service. To complement the growing need for interoperability and acces-
sibility, many prominent workflow managers, including Pegasus [19], Taverna [40],
Kepler [2] (the service-enabled successor to the actor and component-based Ptolemy
II [9]), and Triana [38] have become attuned with service-oriented systems.

Workflow systems with QoS support have also been developed. For example,
Askalon offers system-level QoS, e.g., throughput and transfer rates [7, 8]. Glatard’s
service scheduler exploits parallelism within service and data components [31]. Lera
et al. have developed a performance ontology for dynamic QoS assessment [36]. Ku-
mar et al. [35] have developed a framework for application-level QoS support. Their
system, which integrates well-known Grid utilities (the Condor scheduler [25], Pe-
gasus [19], and DataCutter [6], a tool which enables pipelined execution of data
streams) considers quality-preserving (e.g., chunk size manipulation, which does
not adversely affect accuracy of workflow derivations) and quality-trading QoS pa-
rameters (e.g., resolution, which could affect one QoS in order to optimize another).
In quality-preserving support, the framework allows for parameters, such as chunk-
size, to be issued. These types of parameters have the ability to modify a workflow’s
parallelism and granularity, which potentially reduces execution times without per-
formance tradeoffs. For quality-trading QoS support, an extension to the Condor
scheduler implements the tradeoff between derived data accuracy for improved ex-
ecution time. We believe that Auspice is the first to propose algorithms reconciling
the tradeoffs between data reduction parameters against actual domain errors within
the scientific application.

5.7 Conclusion

At the Ohio State University, we have developed Auspice, an automatic service
composition engine that supports several functionalities, outlined below.

• Enables a nonintrusive framework for sharing scientific data sets and Web ser-
vices through metadata indexing.

• Composes known services and data sets in disparate ways to derive user queries.
• Through error models, it adaptively controls tradeoffs between execution time

and application error to meet QoS constraints.

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 119

• Caches intermediate results for trivializing future service invocations.

We are currently exploring several directions to further our system’s functionali-
ties. We will finalize the keyword search process and also, inspect methods toward
the seamless integration of Deep Web data sources. We also believe that the emer-
gence of the Cloud affords us excellent opportunities to develop fruitful research.
On this front we propose to examine the effects of parallelism in a Cloud versus
static systems, such as a cluster. It is well known that one way to reduce execution
time is by parallelizing large, independent computations within scientific workflow
systems [35]. While it is tempting to maximize the usage of the Cloud’s “infinite
resources,” overheads, such as deploying virtual machine images onto new nodes,
exist. For disparate applications and data sets, there will certainly be cases where the
Cloud’s overheads are amortized against the execution time speed ups. Conversely,
there will also be applications where the Cloud’s overheads override the benefits
for its use. We believe that a study on workloads, parallelism granularity, and cost
would be beneficial toward understanding the tradeoffs between Cloud usage and
other preexisting infrastructures.

Acknowledgements This work is supported by NSF grants 0541058, 0619041, and 0833101.
The equipment used for the experiments reported here was purchased under the grant 0403342.

References

1. Agrawal, S.: Dbxplorer: a system for keyword-based search over relational databases. In:
ICDE, pp. 5–16 (2002)

2. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludscher, B., Mock, S.: Kepler: an extensible
system for design and execution of scientific workflows (2004)

3. Amazon elastic compute cloud. http://aws.amazon.com/ec2
4. Armbrust, M., et al.: Above the clouds: a Berkeley view of cloud computing. Technical Report

UCB/EECS-2009-28, EECS Department, University of California, Berkeley, Feb 2009
5. The atlas experiment. http://atlasexperiment.org
6. Beynon, M.D., Kurc, T., Catalyurek, U., Chang, C., Sussman, A., Saltz, J.: Distributed pro-

cessing of very large datasets with datacutter. Parallel Comput. 27(11), 1457–1478 (2001)
7. Brandic, I., Pllana, S., Benkner, S.: An approach for the high-level specification of QoS-aware

grid workflows considering location affinity. Sci. Program. 14(3–4), 231–250 (2006)
8. Brandic, I., Pllana, S., Benkner, S.: Specification, planning, and execution of QoS-aware grid

workflows within the Amadeus environment. Concurr. Comput. Pract. Exp. 20(4), 331–345
(2008)

9. Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H.: Heterogeneous concur-
rent modeling and design in Java (vol. 2: Ptolemy II software architecture). Technical Report
22, EECS Dept., UC Berkeley, July 2005

10. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and dynamic service
composition in eFlow. In: Conference on Advanced Information Systems Engineering, pp. 13–
31 (2000)

11. Chiu, D., Agrawal, G.: Enabling ad hoc queries over low-level scientific datasets. In: Proceed-
ings of the 21th International Conference on Scientific and Statistical Database Management
(SSDBM’09) (2009)

12. Chiu, D., Agrawal, G.: Flexible caches for derived scientific data over cloud environments.
Technical Report OSU-CISRC-7/09-TR35, Department of Computer Science and Engineer-
ing, The Ohio State University, July 2009

http://aws.amazon.com/ec2
http://atlasexperiment.org

120 D. Chiu and G. Agrawal

13. Chiu, D., Agrawal, G.: Hierarchical caches for grid workflows. In: Proceedings of the 9th
IEEE International Symposium on Cluster Computing and the Grid (CCGRID). IEEE, New
York (2009)

14. Chiu, D., Deshpande, S., Agrawal, G., Li, R.: Composing geoinformatics workflows with
user preferences. In: Proceedings of the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (GIS’08), New York, NY, USA (2008)

15. Chiu, D., Deshpande, S., Agrawal, G., Li, R.: Cost and accuracy sensitive dynamic work-
flow composition over grid environments. In: Proceedings of the 9th IEEE/ACM International
Conference on Grid Computing (Grid’08) (2008)

16. Chiu, D., Deshpande, S., Agrawal, G., Li, R.: A dynamic approach toward QoS-aware service
workflow composition. In: Proceedings of the 7th IEEE International Conference on Web
Services (ICWS’09). IEEE Computer Society, Los Alamitos (2009)

17. Condor dagman. http://www.cs.wisc.edu/condor/dagman
18. Dublin core metadata element set, version 1.1 (2008)
19. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Ber-

riman, G.B., Good, J., Laity, A.C., Jacob, J.C., Katz, D.S.: Pegasus: a framework for mapping
complex scientific workflows onto distributed systems. Sci. Program. 13(3), 219–237 (2005)

20. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
21. Metadata ad hoc working group.content standard for digital geospatial metadata (1998)
22. Federal geospatial data clearinghouse. http://clearinghouse.fgdc.gov
23. Foster, I.: Service-oriented science. Science 308(5723), 814–817 (2005)
24. Foster, I., Kesselman, C.: Globus: a metacomputing infrastructure toolkit. Int. J. Supercomput.

Appl. 11, 115–128 (1996)
25. Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.: Condor-G: a computation man-

agement agent for multi-institutional grids. In: Proceedings of the Tenth IEEE Symposium on
High Performance Distributed Computing (HPDC), San Francisco, CA, August 2001, pp. 7–9
(2001)

26. gbio: Grid for bioinformatics. http://gbio-pbil.ibcp.fr
27. Bioinfogrid. http://www.bioinfogrid.eu
28. Biomedical informatics research network. http://www.nbirn.net
29. Cyberstructure for the geosciences. http://www.geongrid.org
30. The geography network. http://www.geographynetwork.com
31. Glatard, T., Montagnat, J., Pennec, X.: Efficient services composition for grid-enabled data-

intensive applications (2006)
32. Ioannidis, Y.E., Livny, M., Gupta, S., Ponnekanti, N.: Zoo: a desktop experiment management

environment. In: VLDB ’96: Proceedings of the 22th International Conference on Very Large
Data Bases, pp. 274–285. Morgan Kaufmann, San Francisco (1996)

33. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient B+-tree based indexing of moving
objects. In: Proceedings of Very Large Databases (VLDB), pp. 768–779 (2004)

34. Karger, D., et al.: Consistent hashing and random trees: distributed caching protocols for re-
lieving hot spots on the world wide web. In: ACM Symposium on Theory of Computing,
pp. 654–663 (1997)

35. Kumar, V.S., Sadayappan, P., Mehta, G., Vahi, K., Deelman, E., Ratnakar, V., Kim, J., Gil, Y.,
Hall, M., Kurc, T., Saltz, J.: An integrated framework for performance-based optimization of
scientific workflows. In: HPDC ’09: Proceedings of the 18th ACM International Symposium
on High Performance Distributed Computing, pp. 177–186. ACM, New York (2009)

36. Lera, I., Juiz, C., Puigjaner, R.: Performance-related ontologies and semantic web applications
for on-line performance assessment intelligent systems. Sci. Comput. Program. 61(1), 27–37
(2006)

37. Litzkow, M., Livny, M., Mutka, M.: Condor—a hunter of idle workstations. In: Proceedings
of the 8th International Conference of Distributed Computing Systems, June 1988

38. Majithia, S., Shields, M.S., Taylor, I.J., Wang, I.: Triana: a graphical web service composition
and execution toolkit. In: Proceedings of the IEEE International Conference on Web Services
(ICWS’04), pp. 514–524. IEEE Computer Society, Los Alamitos (2004)

http://www.cs.wisc.edu/condor/dagman
http://clearinghouse.fgdc.gov
http://gbio-pbil.ibcp.fr
http://www.bioinfogrid.eu
http://www.nbirn.net
http://www.geongrid.org
http://www.geographynetwork.com

5 Auspice: Automatic Service Planning in Cloud/Grid Environments 121

39. Biological data working group. Biological data profile (1999)
40. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,

K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

41. Sloan digital sky survey. http://www.sdss.org
42. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with interactive

composition techniques. IEEE Intell. Syst. 19(4), 42–49 (2004)
43. University, V.H., Hristidis, V.: Discover: keyword search in relational databases. In: VLDB,

pp. 670–681 (2002)
44. Wan, M., Rajasekar, A., Moore, R., Andrews, P.: A simple mass storage system for the SRB

data grid. In: MSS ’03: Proceedings of the 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSS’03), p. 20. IEEE Computer Society, Washing-
ton (2003)

45. Extensible markup language (xml) 1.1 (second edition)

http://www.sdss.org

Chapter 6
Parameter Sweep Job Submission to Clouds

P. Kacsuk, A. Marosi, M. Kozlovszky, S. Ács,
and Z. Farkas

Abstract This chapter introduces the existing connectivity and interoperability is-
sues of Clouds, Grids, and Clusters and provides solutions to overcome these issues.
The paper explains the principles of parameter sweep job execution by P-GRADE
portal and gives some details on the concept of parameter sweep job submission
to various Grids by the 3G Bridge. Then it proposes several possible solution vari-
ants how to extend the parameter sweep job submission mechanism of P-GRADE
and 3G Bridge toward Cloud systems. Finally, it shows the results of performance
measurements that were gained for the proposed solution variants.

6.1 Introduction

The e-Science infrastructure ecosystem has been recently enriched with Clouds,
and, as the result, the main pillars of this ecosystem are:

• Supercomputer-based grids (e.g., DEISA, TeraGrid, etc.)
• Cluster-based Grids (e.g., EGEE, NorduGrid, OSG, SEE-GRID, etc.)
• Desktop Grids (e.g., BOINC-based, XtremWeb-based, etc.)
• Clouds (e.g., Eucalyptus, OpenNebula, Amazon, etc.)

All pillars have their own advantages that make them attractive for a certain ap-
plication area. Supercomputers are very reliable, robust services that can be used
to solve tightly coupled compute- or data-intensive applications. Their drawback is
the high investment and maintenance cost that is affordable only for a small num-
ber of distinguished computing centers that typically receive financial support from
national or regional governments. Organizing them into a Grid system where large
number of scientists can access them in a balanced and managed way significantly
increases their utilization.

P. Kacsuk (�) · A. Marosi · M. Kozlovszky · S. Ács · Z. Farkas
MTA SZTAKI, P.O. Box 63, 1518 Budapest, Hungary
e-mail: kacsuk@sztaki.hu

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_6, © Springer-Verlag London Limited 2011

123

mailto:kacsuk@sztaki.hu
http://dx.doi.org/10.1007/978-0-85729-049-6_6

124 P. Kacsuk et al.

Cluster-based service Grids are less expensive than Supercomputer-based grids.
They are very flexible in the sense that they can efficiently run any kind of appli-
cations including tightly and loosely coupled, compute- and data-intensive applica-
tions. These are the most popular forms of building Grid systems. Nowadays Grid
computing is used in many research domains to provide the required large set of
computing and storage resources for e-scientists. Europe’s leading Grid computing
project Enabling Grids for E-sciencE (EGEE) is a good example, providing a com-
puting support infrastructure for over 13,000 researchers world-wide, from fields as
diverse as high-energy physics, chemistry, engineering, earth and life sciences.

Desktop Grids represent the least expensive form of collecting resources. The
two main options are the global volunteer computing systems and the institutional
Desktop Grid (DG) systems. In the global version the spare cycles of typically home
computers are donated on a volunteer basis. In DG systems, anyone can bring re-
sources into the grid system, offering them for the common goal of that Grid. Instal-
lation and maintenance of the grid resource middleware is extremely simple, requir-
ing no special expertise. This ease of use enables large numbers of donors to con-
tribute into the pool of shared resources. In the institutional DG systems the spare
cycles of the existing computers of an (academic or commercial) institution are ex-
ploited. Since it uses the free cycles of already available computers, it needs only
minimal initial investment and maintenance cost. Volunteer DG systems are very
popular and collect very large number of resources in the range of 10K–1M CPUs.
The most well-known example of an application that has successfully adapted to
DGs is the SETI@HOME project, in which approximately four million PCs have
been involved. However, the drawback of Desktop Grids is that they are not suitable
for all kind of applications. They can efficiently support only bag of task (parame-
ter sweep and master/worker) compute-intensive applications, however they cannot
meet strict QoS and SLA requirements.

The recently emerged Cloud systems can be used when strict QoS and SLA re-
quirements are applied. In many cases resource requirements are higher than the
available Grid infrastructure resources can provide. It is very common that re-
searchers need shorter response time and reliable infrastructure with strict SLAs.
Cloud-based infrastructure can fulfill such requirements in many cases; however,
the porting costs of complex research application is hard to finance.

Unfortunately, in many cases these pillars are separated from each other and
cannot be used simultaneously by the same e-scientist to solve a large-scale sin-
gle application. Partial results of interconnecting these systems have been achieved
in the past. Cluster- and supercomputer-based grids can be referred to as Service
Grids (SG) since they provide managed cluster and supercomputer resources as
7/24 services. The OGF PGI (Production Grid Infrastructure) working group has put
significant effort to solve the interoperability problem of production service grids,
and yet even the interoperation of various cluster-based and supercomputer-based
grids is not fully solved. The recently formed EMI (European Middleware Initia-
tive) project aims at integrating the three major European grid middleware systems
(ARC, gLite, Unicore) into a unified middleware distribution (UMD). If we could
provide seamless interoperability and easy application migration between Grid and

6 Parameter Sweep Job Submission to Clouds 125

Cloud infrastructure, we can enable the migration of existing scientific applications
from Grids towards Clouds, and we can support the better requirements matching
between applications and infrastructures. The commercial Cloud infrastructure can
support large-scale resource requirements in a reliable way. Solving the interoper-
ability issues between Grids and Clouds, Grid researchers can use in a dynamic way
additional Cloud resources if they have exhausted their available Grid resources.

BOINC-based and XtremWeb-based DG systems have been successfully inte-
grated with gLite-based service grids within the EDGeS project [1] at two levels. At
the middleware level a bridge technology was developed called as 3G Bridge that
enables a seamless extension of gLite-based SGs with DGs, and vice versa gLite-
based SGs can support DG systems in a seamless way. At the application level the
Grid execution back-end of P-GRADE grid portal was extended with the capability
of submitting predefined applications not only into service grids but also to Desktop
Grids.

The usage scenario investigated in EDGeS was as follows. Using the P-GRADE
grid portal, a user has prepared a large workflow application where some of the
workflow nodes require parameter sweep execution with many different parameter
sets. In such case the user can direct the execution of such node to a DG system that
already supports the application represented by this workflow node. Other nodes of
the workflow can be directed to local resources or SG resources as defined by the
user. In this way the user can direct different parts of the workflows to the cheapest
available Grid resources.

The objective of the research reported in this chapter is to investigate how the
application level approach of the EDGeS project can be extended for clouds, i.e.,
how to direct the execution of the parameter sweep workflow nodes of a P-GRADE
workflow not only to DG systems but also to Clouds especially when SLA require-
ments are more strict than a DG system can satisfy.

The chapter is divided into six sections. After this short introduction, Sect. 6.2
explains the principles of parameter sweep job execution by P-GRADE portal. The
next section gives some details on the concept of parameter sweep job submission
to various Grids by the 3G Bridge. Section 6.4 introduces several possible solution
variants for parameter sweep job submission to Cloud systems. Section 6.5 shows
the results of performance measurements. Finally, Sect. 6.6 details some related
research results.

6.2 Principles of Parameter Sweep Job Submission
by P-GRADE Portal

In the academic world science gateways gain more and more popularity especially
for developing and running large-scale applications. In Europe one of the most pop-
ular generic purpose science gateway is the P-GRADE portal. The basic concepts of
the P-GRADE Portal based science gateway solution were mainly developed during
the grid era. Therefore P-GRADE portal is used by many national grids (UK NGS,

126 P. Kacsuk et al.

Grid Ireland, Belgium Grid, SwissGrid, Turkish Grid, Hungarian Grid, Croatian
Grid), by several regional grids (South-East European Grid, Baltic Grid, UK White
Rose Grid), and by several science specific virtual organizations (Chemistry Grid,
Economy Grid, Math Grid, etc.). In recent years P-GRADE portal became popular
even outside Europe: in Grid Malaysia established by MIMOS Berhad, Grid Kaza-
khstan, and Armenian Grid. In total thousands of computers located in more than
45 countries can be accessed via the P-GRADE portal solution.

P-GRADE portal (Parallel Grid Run-time and Application Development Envi-
ronment) [2, 3] is an open-source tool set consisting of a service-rich, workflow-
oriented graphical front-end and a back-end enabling execution in various types of
Cluster/Grid/Cloud systems. It supports workflows composed of sequential jobs,
parallel jobs, and application services. P-GRADE portal hides the complexity of in-
frastructure middleware through its high-level graphical web interface, and it can be
used to develop, execute, and monitor workflow applications on SG systems (built
with Globus, EGEE (LCG or gLite), ARC), on Clusters (using PBS, LSF), and on
DG system (using BOINC and XtremWeb middleware). P-GRADE portal instal-
lations typically provide the user with access to several middleware technologies,
using a single login.

The main features of P-GRADE Portal are:

• Seamless interoperability with the widest range of technologies and Clus-
ter/SG/DG middleware (Globus Toolkit 2, Globus Toolkit 4, LCG, gLite, ARC,
BOINC, PBS, LSF, BOINC, XtremWeb) among the available portal/gateway so-
lutions.

• Multigrid access mechanism to simultaneously utilize multiple grid implementa-
tions [2].

• Fully compliant with all the security features used in Grids (X.509 certificates,
proxy credentials, etc.) and support of other authentication solutions (e.g., Sibbo-
leth).

• Support of workflow-based application design with built-in graphical editor
• Monitoring, accounting and visualization, quota management facilities of infras-

tructure.
• Legacy application publish and reuse capabilities by the GEMLCA mechanism.
• Large international developer community, world-wide usage with a high number

of distributed large-scale, parallel, scientific applications.

The P-GRADE portal applies a DAG (directed acyclic graph) based workflow
concept (shown in Fig. 6.1). In a generic workflow, nodes (shown in Fig. 6.1 as
large squares) represent jobs, which are basically batch programs to be executed on
a computing element. Ports (shown here as small squares around the large ones)
represent input/output files the jobs receiving or producing. Arcs between ports rep-
resent file transfer operations. The basic semantics of the DAG-based workflow is
that a job can be executed if and only if all of its input files are available. This seman-
tics is enforced by the Condor DAGMan workflow manager that is used internally
in P-GRADE portal.

In our experience, user communities have shown substantial interest in being able
to run programs parallel with different input files. P-GRADE portal supports this

6 Parameter Sweep Job Submission to Clouds 127

Fig. 6.1 Example workflow in P-GRADE Portal

kind of parallelization called Parameter Sweep, or Parameter Study at a high level.
The original “job” idea has been extended by two special jobs called Generator
and Collector to facilitate the development of parameter sweep (PS) type workflows
in P-GRADE portal. The Generator job is used to generate the input files for all
parallel jobs automatically (called Automatic Parameter Input Generator) or by a
user-uploaded application (called Normal Generator). The Collector will run after
all parallel executions are completed and then collects all parallel outputs [4]. All
jobs connected to a Generator will run in as many instances as many input files are
generated by the Generator (shown in Fig. 6.2).

6.3 Principles of Parameter Sweep Job Submission to Various
Grids by 3G Bridge

Originally, P-GRADE portal supported parameter sweep job submission to Globus-
and gLite-based Service Grids. However, for compute-intensive parameter sweep
jobs, Desktop Grids are more ideal than SGs since they are less expensive. Directing

128 P. Kacsuk et al.

Fig. 6.2 Parameter sweep solution in P-GRADE Portal with Generator and Collector

these kinds of parameter sweep jobs into DGs will enable one to use the expensive
service Grid resources for other type of applications that are not supported by DGs.

In order to direct parameter sweep jobs to Desktop Grids, the 3G Bridge service
developed in the EDGeS project has been interfaced with P-GRADE portal. The
internal architecture of the 3G Bridge can be seen in Fig. 6.3, where the following
components can be identified:

• WSSubmitter provides a web service interface in order to access the 3G Bridge
services as a usual web service.

• HTTPD enables to download files from the 3G Bridge machine.
• Job Database is used for storing the jobs to be executed in the target grids.
• Queue Manager is responsible for handling the jobs in the database by using a

very simple scheduler for calling the specific plug-ins.
• Grid Handler Interface provides a generic interface above the grid plug-ins.
• Plug-ins responsible for submitting the jobs into different destination infrastruc-

tures.
• Download Manager is an internal component of the 3G Bridge that downloads

job input files from 3G Bridge clients.

Whenever a new destination infrastructure is to be connected to P-GRADE por-
tal, the corresponding plug-in should be written and attached to the Grid Handler
Interface. In the EDGeS project the gLite, XtremWeb, BES, and BOINC plug-ins

6 Parameter Sweep Job Submission to Clouds 129

Fig. 6.3 Interfacing P-GRADE portal and 3G Bridge

have been developed. With these plug-ins, the user can submit PS jobs to gLite,
XtremWeb, ARC and UNICORE, or BOINC Grids.

Once a job should be submitted using the 3G Bridge, P-GRADE Portal runtime
makes use of the WSClient application, the client of WSSubmitter. Using this tool,
P-GRADE portal can send jobs to the target 3G Bridge service and plug-in. The
jobs’ input files are sent along with the job submission request, so in this scenario
the Download Manager has no real task. Once a job has been submitted, P-GRADE
portal periodically updates the job’s status using the WSClient application. Finally,
if the job has finished, P-GRADE portal fetches the output files from the 3G Bridge
service machine using the HTTPD server.

DC-API [5] is used to implement both the BOINC and Condor plug-ins [6].
It provides a simple uniform API for writing master–worker-type applications for
different Grids (currently BOINC, Condor, and the Hungarian Cluster Grid are sup-
ported). This means that applications using DC-API do not need modifications when
moving from one supported platform to another, just relinking with the appropriate
DC-API backend library. The Condor and BOINC 3G Bridge plug-ins are basically
instances of the same “DC-API-Single” plug-in, but linked with a different DC-API
backend library. This also means that the plug-ins are interchangeable; instead of a
Condor plug-in, a BOINC one could be used (with some restrictions).

6.4 Variants of Creating 3G Bridge Cloud Plug-Ins

In order to submit PS jobs not only to grids but also to Clouds, the possible variants
of creating a Cloud plug-in for 3G Bridge should be investigated. Once the Cloud
plug-in is available, the portal user can submit PS jobs not only to SGs and DGs but
also to Clouds. The Cloud plug-in has to solve three problems to submit and manage
PS jobs in Cloud resources:

130 P. Kacsuk et al.

• Cloud resource management: takes care of allocating Cloud resource for PS jobs
when they arrive and removing the Cloud resources when no PS jobs are available
for Cloud execution.

• Job submission: Submits PS jobs waiting in the 3G Bridge Job Database to the
allocated Cloud resources.

• Job scheduling on Cloud resources: Decides which allocated Cloud resources to
be used by the individual PS jobs.

6.4.1 The Naive Solution

A naive solution would be that for each incoming PS job, the 3G Bridge plug-in
allocates a new Cloud resource and submits the job to this cloud resource. Once
the execution of the job on the Cloud resource is finished, the 3G Bridge plug-
in removes the cloud resource. This is obviously a very nonoptimal solution that
assumes that the number of available Cloud resources is unlimited as well as the
budget the user can spend on them. In a realistic scenario the user can afford only
a certain number of resources, and once those resources are loaded with jobs, some
intelligent job scheduling decision is needed to which already loaded resource to
submit the newly arriving PS job. Therefore, more sophisticated solutions have to
be investigated where the number of usable Cloud resources has an upper limit. We
have considered three basic solution variants:

• Variant 1: Independent Cloud resources with local job managers.
• Variant 2: Communicating Cloud resources with centralized job manager.
• Variant 3: Independent Cloud resources with centralized job managers.

In all three variants we need a job manager that can realize job scheduling on
the finite set of resources. Any available job manager system can be considered for
this purpose. We selected Condor since it is widely used in the academic commu-
nity.

6.4.2 Independent Cloud Resources with Local Job Managers

The concept of the first variant is shown in Fig. 6.4. The main idea is that on each
Cloud resource the 3G Bridge Cloud plug-in deploys a VM image containing a
Condor job manager and a Condor worker. The Condor job manager takes care of
scheduling the jobs submitted to this resource while the worker will execute them.
Due to the Condor job manager, many jobs can be sent to the same Cloud resource.
In the 3G Bridge Cloud plug-in, various scheduling algorithms can be applied to se-
lect the most optimal Cloud resource. For example, a simple algorithm that realizes
both scheduling and Cloud resource management can be the following, where the
decision is based on the number of jobs allocated for the Cloud resources:

6 Parameter Sweep Job Submission to Clouds 131

Start and submit:
1: if m = 0 ∧ k < n then
2: instanceid ← start_instance()
3: else
4: instanceid ← find_min(j0..jk−1)

5: end if
6: submit_job(instanceid, jobid)

Stop:
1: for i ← 0 to k − 1 do
2: if ti < timestamp("-20 minutes")∧ji = 0 then
3: stop_instance(i)
4: end if
5: end for

Legend:
m: number of free instances
k: total number of running instances
n: maximum number of instances
jx : number of jobs queued on instance x

tx : timestamp of last execution on instance x

According to this algorithm, the 3G Bridge Cloud plug-in is going to start a new
instance if there is no free instance and the number of running instances is less than
the upper limit of the usable instances, and in this case the job will be submitted
to this new instance. Otherwise the new job will be submitted to that instance that
has the minimum number of assigned jobs. Notice that this algorithm assumes that
the execution times of the PS jobs are approximately equal. It is true for many
PS applications, but not always. If this assumption does not hold, the load of the
different Cloud resources could significantly vary, and there is no remedy for such
problems in this architecture.

The Cloud resource management part of the algorithm will stop an instance if its
job queue is empty and there was no activity in the last 20 minutes. This 20 minute
buffer time is used to avoid the frequent and useless stopping/restarting activities
when the time between the incoming jobs is in the range of several minutes.

The 3G Bridge Cloud plug-in is responsible to allocate the required number of
Condor job manager/worker instances in the cloud and submit the PS jobs to the
Condor job managers of the instances. The decision to which Condor instance a
certain PS job should be sent is also taken by the 3G Bridge Cloud plug-in. It means
that all the three functions (cloud resource management, job submission, and job
scheduling) should be performed by the 3G Bridge Cloud plug-in. Integrating these
three functions into one monolithic plug-in is not a desirable solution since it means
that every time a new type of Cloud is to be connected to 3G Bridge, a new complex
plug-in with all these functionalities should be developed. A better approach would
be to develop an independent simple plug-in for all these three functionalities.

132 P. Kacsuk et al.

Fig. 6.4 Variant 1: independent cloud resources with local job managers

As a summary, one can say that the advantages of this variant are as follows:

• Still simple to implement compared to naive solution.
• Uses reliable method for task submission (e.g. Condor WS API).
• The number of used Cloud resources is controllable.

However, there are several serious drawbacks as well:

• A single plug-in manages both the resource allocation and job submission and
scheduling that requires major redesign whenever new Clouds (e.g. OpenNebula,
Eucalyptus, etc.) or new job managers (PBS, LSF, etc.) are to be used.

• Special prepared VM image is required.
• Since every VM image contains a Job Manager, it raises some overhead. For

example, in case of Condor it is around 200 Mb, which has extra cost both in the
storage area and in the communication time when the image is moved from the
storage to the resources.

• Nodes are separated from each other, and hence there is no way to reschedule
jobs from a node to another. As a consequence, some nodes might become over-
committed while others are empty.

6.4.3 Communicating Cloud Resources with Centralized Job
Manager

The architecture and concept of the second variant are shown in Fig. 6.5. The main
difference compared with the first variant is that the Condor job manager is placed
in a separate image. The other VM images contain only the Condor worker, and the
Cloud resources where they are deployed should be able to communicate with the
Cloud resource of the Condor job manager.

6 Parameter Sweep Job Submission to Clouds 133

The 3G Bridge Cloud plug-in becomes significantly simpler since there is no
need to schedule the incoming PS jobs among the Condor worker cloud resources.
This scheduling will be done by the Condor job manager. The plug-in needs only
to start/stop instances for the job manager and submit the jobs to the Condor job
manager. The resource management algorithm of the 3G Bridge Cloud plug-in is as
follows:

Start and submit:
1: if tj/k > q ∧ k < n then
2: start_worker()
3: end if
4: submit_job_to_frontend(jobid)

Stop:
1: for i ← 0 to k − 1 do
2: if tj/(k − 1) < q ∧ ti < timestamp("-20 minutes") then
3: stop_worker(i)
4: end if
5: end for

Legend:
m: number of free instances
k: total number of running instances
n: maximum number of instances
t : timestamp of last job submission
tj : total number of jobs in the Cloud
q: preferred maximum job number per worker

According to this algorithm, the 3G Bridge cloud plug-in will deploy a new in-
stance only if the average job number per worker surpasses the preferred maximum
job number per worker and the number of running instances is less than the per-

Fig. 6.5 Variant 2:
communicating cloud
resources with centralized job
manager

134 P. Kacsuk et al.

mitted maximum number of instances. A worker Cloud resource will be stopped if
there was no job submission in the last 20 minutes and the average job number per
worker is less than the preferred maximum job number per worker. A worker will
be selected based on its “shutdown time window.” This can mean different things:
Commercial Cloud providers (e.g., Amazon EC2) may charge for instance hours,
rounded up, and thus an instance will be charged for an hour regardless if it was
running for 15 or 59 minutes. In this case the shutdown time window could be open
in the 54–58th minutes of every hour in the lifetime of an instance, and the plug-in
is allowed to shutdown the instance during this time window only.

The advantage of this architecture is that the job manager balances tasks be-
tween the Cloud resources. As a result, no resource gets overcommitted while oth-
ers starve. Further advantage is that parallel (MPI, PVM, Map-Reduce, Hadoop)
applications can also be executed in this architecture. However, there are several
serious drawbacks as well. Two specially prepared VM images are required: one
for the workers and one for the Frontend. This solution can be used only in such a
Cloud where communication among the Cloud resources is manageable. This archi-
tecture also applies a single plug-in although it has to implement only the resource
management and job submission functions.

6.4.4 Independent Cloud Resources with Centralized Job
Managers

The architecture and concept of the third variant are shown in Fig. 6.6. It can be seen
that the three functions (resource management, job submission, and job scheduling)
of the 3G Bridge cloud plug-in are separated as independent functional units. Even
more, the resource management function is realized by two separate components:
Cloud Plug-in and Cloud Resource Manager. The latter collects information from
the 3G Bridge Condor job queue (Queue 1 in Fig. 6.6) about the number of waiting
Condor jobs and from the cloud job queue (in our current implementation, Amazon
EC2 or Eucalyptus) about the available Condor worker instances. If the number of
worker instances has not reached yet their upper limit and there are waiting Condor
jobs in the 3G Bridge Condor job queue, the Cloud Resource Manager sends jobs
into the Cloud Plug-in queue (Queue 2 in Fig. 6.6). For every such job, the Cloud
Plug-in will deploy a new worker instance in the cloud, and the instances will be
kept running as long as the jobs in Queue 2 of the 3G Bridge are in running state.
Once an instance is deployed, it will connect to the Condor Submitter/Master unit
in order to get a Condor job to execute and will act as an ordinary Condor worker in
a Condor pool. The instances are supplied with the address of the Condor Master at
startup time, meaning that different instances may connect to different masters and
thus to different pools. If there is no waiting Condor job in the 3G Bridge Condor
job queue and a certain time has already spent without new arriving Condor job
activity, the Cloud Resource Manager cancels some running jobs in the Cloud Plug-
in queue, and thus the Cloud instances belonging to those jobs will be terminated
by the Cloud plug-in.

6 Parameter Sweep Job Submission to Clouds 135

Fig. 6.6 Variant 3: independent cloud resources with centralized job manager(s)

PS-jobs arriving at 3G Bridge are submitted to the Condor Submitter/Master unit
by the regular DC-API Condor Plug-in. It is the task of the Condor Submitter/Master
unit to distribute the Condor jobs among the worker instances running on the cloud
resources. Notice that this part of the architecture is exactly the same that is used in
any 3G Bridge–Condor interconnection. This is exactly the advantage of this archi-
tecture concept that the implementation of the job submission and job scheduling
functions does not require any new development.

The architecture of Fig. 6.6 is also very flexible. If someone would like to replace
Condor with another job manager, for example, PBS, then it is only the DC-API
Condor Plug-in that should be replaced with a PBS Plug-in. The Cloud Plug-in and
the Cloud Resource manager still can be used without any modification. Similarly, if
someone would like to change Amazon EC2/Eucalyptus for another type of cloud,
for example, OpenNebula, then only the cloud interface calls of the Cloud Plug-in
should be changed.

If someone would like to use several Clouds simultaneously, the architecture is
easily expandable to support it. In this case, an additional cloud Queue and Cloud
Plug-in should be added to the architecture, and the Cloud Resource Manager should
be extended with information collection capability from the new cloud, too.

136 P. Kacsuk et al.

6.5 Performance Measurements

From the three variants we choose to implement the last one (Variant 3) since it
provides simplicity (only workers are running on the Cloud) with enough flexibil-
ity (Cloud resources can be started and shutdown independently, and anytime with
only minor restrictions, rescheduling of work between nodes is possible). For the
development, we used an in-house Eucalyptus 1.51-based local Cloud, which was
able to run four instances, each with 512-MB memory. For a real-world deploy-
ment, we used Amazon EC2 North-American availability zone with four “High-
CPU Medium” (c1.medium) instances to execute 80 jobs. These instances have two
virtual cores, so eight cores in total. Each of them has increased CPU performance
(“2.5 EC2 Compute Units” each), compared to the default “Small” instance (“1 EC2
Compute Units”), while only costs twice the price thus seem optimal for compu-
tation intensive tasks. Although there is a “High-CPU Large” instance with eight
cores, that does not provide more performance per CPU or lower cost compared to
the medium one, according to the information on the Amazon Web Services Web-
site [7].

Our test was executed with the E-Marketplace Model Integrated Logistics (EM-
MIL) [8] application, which is solving a multiparameter linear optimization problem
to facilitate three-sided negotiation between buyers, sellers, and third-party logistics
providers. Its workflow is based on the most supported parallel-execution possibil-
ities of P-GRADE Portal: Parameter Sweep (see Fig. 6.2). 3G Bridge was used for
executing the “Parameter sweep jobs” of the EMMIL workflow. We configured EM-
MIL so that a single PS job would run approximately 4 minutes on a “High-CPU
Medium” Amazon EC2 instance.

For the workers, we have developed our own Amazon Machine Image (AMI)
similar to [9]. The image is based on Debian Linux 5.0 32-bit and Condor 7.4.2.
Each instance is supplied with the IP address of the Host running the 3G Bridge and
Condor, and thus they can automatically join the Condor pool (and leave when they
are shut down). Figure 6.7 shows our results, namely: (a) Time-lapse of the whole
execution, (b) Init phase, and (c) Shutdown phase.

80 jobs were submitted to the 3G Bridge, which then submitted the jobs to the
Condor cluster. As Fig. 6.7b shows, 92 seconds were required for the 80 jobs to
appear in Condor. Condor caused this, at certain points during the submission the
3G Bridge started to receive “Connection refused” errors when submitting jobs from
its queue to Condor. In such case the 3G Bridge enters an exponential fallback sleep
cycle between retries, with a maximum (configured) of 32 seconds. It took 159 sec-
onds from the beginning of submission of the jobs until all eight workers joined the
pool, but a worker started the first job after 149 seconds. This is the total overhead
that includes the submission to 3G Bridge, from 3G Bridge to Condor and the time
required for the Cloud resources to join the Condor pool.

The total time for execution of the 80 tasks via 3G Bridge on the Cloud resources
took 2860 seconds. Since we did not want to submit more jobs, we issued a manual
shutdown for the workers (Fig. 6.7c), by issuing a cancel command for the tasks
representing the running Cloud resources in the corresponding 3G Bridge queue.

6 Parameter Sweep Job Submission to Clouds 137

F
ig

.6
.7

E
M

M
IL

Jo
bs

(8
0)

ex
ec

ut
ed

on
fo

ur
A

m
az

on
E

C
2

H
ig

h
C

PU
in

st
an

ce
s

vi
a

3G
-B

ri
dg

e

138 P. Kacsuk et al.

6.6 Related Research

Shantenu Jha et al. [10] discuss how Clouds may be treated as higher-level abstrac-
tion from Grids. For example, data storage (S3 [11]) and computing (EC2) services
offered by Amazon can be thought of as data and storage grids with less exposed
semantics (features or options) or can be considered as applications of the underly-
ing service layer. They define the term “usage modes” for different usage patterns or
deployment scenarios of applications and “affinity” for describing the level of sup-
port of a system for a given usage mode. General-purpose Grids have large semantic
feature set, since they try to address a broad variety of usage modes (and applica-
tions). They argue that as the semantic complexity decreases, the usability from the
end users perspective increases. According to that, Clouds might be “closer” to end
users than traditional Grids. This implies that adapting Clouds to Grid interfaces
and APIs (e.g., SAGA) first need high-level abstractions for application develop-
ment and deployment (direct cause of the different “affinities” of the two systems).

Chris Miceli et al. [12] were using “All-pairs” on top of SAGA (Simple API for
Grid Applications) based MapReduce [13] implementation. The authors focus on
data-intensive tasks, while we focus on computation-intensive tasks, but the gen-
eral approach and conclusions still match. SAGA is similar to DC-API in means
of providing a uniform simple API for GRID applications, but DC-API focuses on
master–worker paradigm solely on a few selected platforms rather than aiming for
a generic solution. Also SAGA’s runtime and (job) adaptors show similarities with
the plug-in model of 3G Bridge. The authors executed their experiments on Grids,
“Cloud-like infrastructure,” and Clouds (Amazon EC2, Eucalyptus, and using Nim-
bus [14]) with up to 10 workers and with different data-set sizes ranging from 1 GB
to 10 GB. On clouds, similar to our approach, they created a custom VM image
with SAGA deployed at EC2 but used a bootstrap script that deployed SAGA and
dependencies on NIMBUS and Eucalyptus.

Both approaches have their benefits, bootstrapping a “stock” VM image on each
boot allows one to use generic images, but an overhead is added every time the VM
starts. On the other hand, using custom images allows starting quickly but requires
special prepared VM images. The authors claim that EC2 took 90 seconds, while
Eucalyptus took 45 seconds to instantiate a VM. It took us 120 seconds on EC2 from
issuing a start command for a VM instance until the first Condor worker was ready
to accept jobs; on our local Eucalyptus pool this took a lot more time, so we only
used Eucalyptus for development and verification. The difference of measurements
on EC2 can come from many factors, like the size of the VM image used (it needs to
be copied from a store every time a new instance uses it) or like the added overhead
of the time required for the worker to join the Condor pool after start. Nevertheless,
this shows that there is space for improvement there. The authors also show that
there is interoperability between Grids and Clouds using SAGA: the same interface
and function calls can be used whether the submission is to Grids or Clouds; this is
also true for our approach, since it is only a matter of choosing the appropriate job
queue at submission time.

Gideon Juve’s “howto” [9] is what we used as a basis for creating the Condor
pool of workers in our implementation. This document gives a good starting point

6 Parameter Sweep Job Submission to Clouds 139

and general idea how to connect Condor workers running on Amazon EC2 to an
arbitrary Condor pool.

Douglas Thain et al. [15] describe how a Condor-based cluster can act as a cloud
computer and propose to extend the Map-Reduce abstraction for cloud comput-
ing with new abstraction layers (namely: Map, All-Pairs, Sparse-Pairs, Wavefront,
Directed Graph). P-GRADE portal solution is using internally the Condor DAG-
Man. Condor-distributed system is well-known and one of the most widely used
distributed processing systems, deployed at several thousand institutions around the
world, managing several hundred thousand CPU cores in clustered environment.

Mohsen Amini et al. [16] is focusing on so-called marketing-oriented schedul-
ing policies, which can provision extra resources when the local cluster resources
are not sufficient to meet the user requirements. Older scheduling policies used in
Grids are not working effectively in Cloud environments, mainly because Infras-
tructure as a Service (IaaS) providers are charging users in a pay-as-you-go man-
ner in an hourly basis for computational resources. To find the trade-off between
to buy acquired additional resources from IaaS and reuse existing local infrastruc-
ture resources, he proposes two scheduling policies (Cost and Time Optimization
scheduling policies) for mixed (commercial and noncommercial) resource environ-
ments. The evaluation of the policies was done in Gridbus broker that is originally
able to interface with Condor and SGE. However, he is also extending the broker
to interact with Amazon EC2. Basically two different approaches were identified
on provisioning commercial resources. The first approach is offered by the IaaS
providers at resource provisioning level (user/application constraints are neglected:
deadline, budget, etc.); the other approach deploys resources focusing at user level
(time and/or cost minimization, estimating the workload in advance, etc.).

OpenNebula [17] can hire commercial (Amazon EC2) resources in an on-
demand manner, when the local cluster resources are overloaded. Llorente et al. [18]
extend OpenNebula to provision additional resources for applications to handle peak
load, when the local cluster or grid environment is saturated. Silva et al. [19] pro-
poses a mechanism for creating and deploying optimal amount of resources in Cloud
environment, when the workload is hard to predict due to the usage of Bag-of-Task
applications.

One solution of application deployment on Cloud infrastructure is detailed
in [20], which introduce a way to distribute a parameter-sweep-type application
with Aneka (Cloud development and management platform) on Cloud resources.
In Aneka enterprise clouds cost-optimization, time-optimization, and conservative
time-optimization scheduling algorithms are available.

6.7 Conclusion

This chapter introduced the existing connectivity and interoperability issues of
Clouds, Grids, and Clusters and showed solutions how such issues can be solved.
Firstly we have enumerated the main pillars of e-Science infrastructure ecosystems
which are recently extended by Cloud infrastructure. Then the basic principles of

140 P. Kacsuk et al.

parameter sweep job concept and its execution by P-GRADE portal was briefly ex-
plained. We have then examined three solution variants in details for processing
parameter sweep jobs on Cloud resources. From these three alternatives, the last
variant—the most flexible solution using the 3G Bridge developed by the EDGeS
project to interconnect different (grid) middleware—was implemented. With per-
formance measurements we have evaluated the implemented solution. Our results
show clearly that this solution allows use on-demand cloud resources in a transpar-
ent and efficient way with improved scalability. Future work includes performing
larger-scale tests and integrating this solution into the EDGeS infrastructure. We
also need to handle different requirements of the tasks (e.g., currently we only sup-
port 32-bit Linux environment, and no extra dependencies or requirements may be
defined for the tasks).

References

1. Urbah, E., Kacsuk, P., Farkas, Z., Fedak, G., Kecskemeti, G., Lodygensky, O., Marosi, A.,
Balaton, Z., Caillat, G., Gombas, G., Kornafeld, A., Kovacs, J., He, H., Lovas, R.: EDGeS:
bridging EGEE to BOINC and XtremWeb. J. Grid Comput. 7(3), 335–354 (2009)

2. Kacsuk, P., Sipos, G.: Multi-grid multi-user workflows in the P-GRADE portal. J. Grid Com-
put. 3(34), 221–238 (2005)

3. Kacsuk, P., Kiss, T., Sipos, G.: Solving the grid interoperability problem by P-GRADE portal
at workflow level. Future Gener. Comput. Syst. 24(7), 744–751 (2008)

4. Kacsuk, P., Farkas, Z., Herman, G.: Workflow-level parameter study support for production
grids. In: International Conference on Computational Science and its Application, ICCSA
2007, Part III, Kuala Lumpur, 2007. Lecture Notes in Computer Science, vol. 2007, pp. 872–
885. Springer, Berlin (2007). ISBN:978-3-540-74482-5

5. Marosi, A.C., Gombás, G., Balaton, Z., Kacsuk, P.: Enabling Java applications for BOINC
with DC-API. In: Proceedings of the 7th International Conference on Distributed and Parallel
Systems, pp. 3–12 (2009)

6. Kacsuk, P., Kovács, J., Farkas, Z., Marosi, A., Gombás, G., Balaton, Z.: SZTAKI desktop grid
(SZDG): a flexible and scalable desktop grid system. J. Grid Comput. 7(4), 439–461 (2009)

7. Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-types/. Cited 13 May
2010

8. Kacsuk, P., Kacsukné, B.L., Hermann, G., Balasko, A.: Simulation of EMMIL E-marketplace
model in the P-GRADE grid portal. In: Proceedings of ESM’2007 International Conference,
Malta, pp. 569–573 (2007)

9. Condor Workers on Amazon EC2: http://www-rcf.usc.edu/juve/condor-ec2/. Cited 13 May
2010

10. Jha, S., Merzky, A., Fox, G.: Using clouds to provide grids with higher levels of abstraction
and explicit support for usage modes. Concurr. Comput. Pract. Exp. 21(8), 1087–1108 (2009)

11. Amazon Simple Storage Service (S3). https://aws.amazon.com/s3. Cited 13 May 2010
12. Miceli, C., Miceli, M., Jha, S., Kaiser, H., Merzky, A.: Programming abstractions for data

intensive computing on clouds and grids. In: IEEE International Symposium on Cluster Com-
puting and the Grid, pp. 478–483. IEEE Computer Society, Los Alamitos (2009). ISBN:978-
0-7695-3622-4

13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

14. NIMBUS. http://www.nimbusproject.org/. Cited 13 May 2010

http://aws.amazon.com/ec2/instance-types/
http://www-rcf.usc.edu/juve/condor-ec2/
https://aws.amazon.com/s3
http://www.nimbusproject.org/

6 Parameter Sweep Job Submission to Clouds 141

15. Thain, D., Moretti, C.: Abstractions for Cloud Computing with Condor, Syed Ahson and Mo-
hammad Ilyas, Cloud Computing and Software Services. CRC Press, Boca Raton (2009).
ISBN:9781439803158

16. Salehi, M.A., Buyya, R.: Adapting market-oriented scheduling policies for cloud computing.
In: 10th International Conference on Algorithms and Architectures for Parallel Processing,
ICA3PP 2010, 21–23 May 2010, Busan, Korea

17. Fontán, J., Vázquez, T., Gonzalez, L., Montero, R.S., Llorente, I.M.: OpenNEbula: the open
source virtual machine manager for cluster computing. In: Open Source Grid and Cluster
Software Conference (2008)

18. Llorente, I.M., Moreno-Vozmediano, R., Montero, R.: Cloud computing for on-demand grid
resource provisioning. In: Advances in Parallel Computing (2009)

19. Silva, J.N., Veiga, L., Ferreira, P.: Heuristic for resources allocation on utility computing in-
frastructures. In: Proceedings of the 6th International Workshop on Middleware for Grid Com-
puting, pp. 9–17 (2008)

20. Cloud based parameter sweeping of a repast simphony simulation model—GUI mode,
Technical Note, 24/02/2010. http://community.decisci.com/content/cloud-based-parameter-
sweeping-repast-simphony-simulation-model-gui-mode#content. Cited 13 May 2010

http://community.decisci.com/content/cloud-based-parameter-sweeping-repast-simphony-simulation-model-gui-mode#content
http://community.decisci.com/content/cloud-based-parameter-sweeping-repast-simphony-simulation-model-gui-mode#content

Chapter 7
Energy Aware Clouds

Anne-Cécile Orgerie, Marcos Dias de Assunção,
and Laurent Lefèvre

Abstract Cloud infrastructures are increasingly becoming essential components
for providing Internet services. By benefiting from economies of scale, Clouds can
efficiently manage and offer a virtually unlimited number of resources and can mini-
mize the costs incurred by organizations when providing Internet services. However,
as Cloud providers often rely on large data centres to sustain their business and of-
fer the resources that users need, the energy consumed by Cloud infrastructures
has become a key environmental and economical concern. This chapter presents an
overview of techniques that can improve the energy efficiency of Cloud infrastruc-
tures. We propose a framework termed as Green Open Cloud, which uses energy
efficient solutions for virtualized environments; the framework is validated on a ref-
erence scenario.

7.1 Introduction

Cloud solutions have become essential to current and future Internet architectures
as they provide on-demand virtually unlimited numbers of compute, storage and
network resources. This elastic characteristic of Clouds allows for the creation of

A.-C. Orgerie (�)
ENS Lyon, LIP Laboratory (UMR CNRS, INRIA, ENS, UCB), University of Lyon, 46 allée
d’Italie, 69364 Lyon Cedex 07, France
e-mail: annececile.orgerie@ens-lyon.fr

M.D. de Assunção · L. Lefèvre
INRIA, LIP Laboratory (UMR CNRS, INRIA, ENS, UCB), University of Lyon, 46 allée d’Italie,
69364 Lyon Cedex 07, France

M.D. de Assunção
e-mail: marcos.dias.de.assuncao@ens-lyon.fr

L. Lefèvre
e-mail: laurent.lefevre@inria.fr

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_7, © Springer-Verlag London Limited 2011

143

mailto:annececile.orgerie@ens-lyon.fr
mailto:marcos.dias.de.assuncao@ens-lyon.fr
mailto:laurent.lefevre@inria.fr
http://dx.doi.org/10.1007/978-0-85729-049-6_7

144 A.-C. Orgerie et al.

computing environments that scale up and down according to the requirements of
distributed applications.

Through economies of scale, Clouds can efficiently manage large sets of re-
sources; a factor that can minimize the cost incurred by organizations when provid-
ing Internet services. However, as Cloud providers often rely on large data centres
to sustain their business and supply users with the resources they need, the energy
consumed by Cloud infrastructures has become a key environmental and econom-
ical concern. Data centres built to support the Cloud computing model can usually
rely on environmentally unfriendly sources of energy such as fossil fuels [2].

Clouds can be made more energy efficient through techniques such as resource
virtualization and workload consolidation. After providing an overview of energy-
aware solutions for Clouds, this chapter presents an analysis of the cost of virtu-
alization solutions in terms of energy consumption. It also explores the benefits
and drawbacks that Clouds could face by deploying advanced functionalities such
as Virtual Machine (VM) live migration, CPU throttling and virtual CPU pinning.
This analysis is important for users and administrators who want to devise resource
allocation schemes that endeavor to reduce the CO2 footprint of Cloud infrastruc-
tures.

As we attempt to use recent technologies (i.e. VM live migration, CPU capping
and pinning) to improve the energy efficiency of Clouds, our work can be positioned
in the context of future Clouds. This work proposes an energy-aware framework
termed as Green Open Cloud (GOC) [21] to manage Cloud resources. Benefiting
from the workload consolidation [34] enabled by resource virtualization, the goal of
this framework is to curb the energy consumption of Clouds without sacrificing the
quality of service (in terms of performance, responsiveness and availability) of user
applications. All components of the GOC architecture are presented and discussed:
Green policies, prediction solutions and network presence support. We demonstrate
that under a typical virtualized scenario, GOC can reduce the energy used by Clouds
by up to 25% compared to basic Cloud resource management.

The remaining part of this chapter is organized as follows. Section 7.2 discusses
energy-aware solutions that can be applied to Clouds. Then, the energy cost of vir-
tual machines is investigated in Sect. 7.3. The GOC architecture is described in
Sect. 7.4 and evaluated on a typical virtualized scenario Sect. 7.5.

7.2 Overview of Energy Aware Techniques for Clouds

Current Web applications demand highly flexible hosting and resource provision-
ing solutions [35]. The rising popularity of social network Web sites, and the desire
of current Internet users to store and share increasing amounts of information (e.g.
pictures, movies, life-stories, virtual farms) have required scalable infrastructure.
Benefiting from economies of scale and recent developments in Web technologies,
data centres have emerged as a key model to provision resources to Web applica-
tions and deal with their availability and performance requirements. However, data

7 Energy Aware Clouds 145

centres are often provisioned to handle sporadic peak loads, which can result in low
resource utilization [15] and wastage of energy [12].

The ever-increasing demand for cloud-based services does raise the alarming
concern of data centre energy consumption. Recent reports [29] indicate that energy
costs are becoming dominant in the Total Cost of Ownership (TCO). In 2006, data
centres represented 1.5 percent of the total US electricity consumption. By 2011, the
current data centre energy consumption could double [31] leading to more carbon
emissions. Electricity becomes the new limiting factor for deploying data centre
equipments.

A range of technologies can be utilized to make cloud computing infrastruc-
tures more energy efficient, including better cooling technologies, temperature-
aware scheduling [9, 24, 30], Dynamic Voltage and Frequency Scaling (DVFS) [14,
33], and resource virtualization [36]. The use of VMs [3] brings several benefits in-
cluding environment and performance isolations; improved resource utilization by
enabling workload consolidation; and resource provisioning on demand. Neverthe-
less, such technologies should be analysed and used carefully for really improving
the energy-efficiency of computing infrastructures [23]. Consolidation algorithms
have to deal with the relationship between performance, resource utilization and
energy, and can take advantage from resource heterogeneity and application affini-
ties [34]. Additionally, techniques such as VM live-migration [6, 13] can greatly im-
prove the capacities of Cloud environments by facilitating fault management, load
balancing and lowering system maintenance costs. VM migration provides a more
flexible and adaptable resource management and offers a new stage of virtualization
by removing the concept of locality in virtualized environments [38].

The overhead posed by VM technologies has decreased over the years, which has
expanded their appeal for running high-performance computing applications [37]
and turned virtualization into a mainstream technology for managing and provid-
ing resources for a wide user community with heterogeneous software-stack re-
quirements. VM-based resource management systems, such as Eucalyptus [26] and
OpenNebula [10], allow users to instantiate and customize clusters of virtual ma-
chines atop the underlying hardware infrastructure. When applied in a data centre
environment, virtualization can allow for impressive workload consolidation. For
instance, as Web applications usually present variable user population and time-
variant workloads, virtualization can be employed to reduce the energy consumed
by the data centre environment through server consolidation, whereby VMs run-
ning different workloads can share the same physical host. By consolidating the
workload of user applications into fewer machines, unused servers can potentially
be switched off or put in low energy consumption modes. Yet attracting virtualiza-
tion is, its sole use does not guarantee reductions in energy consumption. Improving
the energy efficiency of Cloud environments with the aid of virtualization generally
calls for devising mechanisms that adaptively provision applications with resources
that match their workload demands and utilizes other power management technolo-
gies such as CPU throttling and dynamic reconfiguration, allowing unused resources
to be freed or switched off.

Existing work has proposed architectures that benefit from virtualization for
making data centres and Clouds more energy efficient. The problem of energy-

146 A.-C. Orgerie et al.

efficient resource provisioning is commonly divided into two subproblems [22]:
at micro- or host level, power management techniques are applied to minimize the
number of resources used by applications and hence reduce the energy consumed
by an individual host; and at a macro-level, generally a Resource Management Sys-
tem (RMS) strives to enforce scheduling and workload consolidation policies that
attempt to reduce the number of nodes required to handle the workloads of user
applications or place applications in areas of a data centre that would improve the
effectiveness of the cooling system. Some of the techniques and information com-
monly investigated and applied at a macro- or RMS-level to achieve workload con-
solidation and energy-efficient scheduling include:

• Applications workload estimation;
• The cost of adaptation actions;
• Relocation and live-migration of virtual machines;
• Information about server-racks, their configurations, energy consumption and

thermal states;
• Heat management or temperature-aware workload placement aiming for heat dis-

tribution and cooling efficiency;
• Study of application dependencies and creation of performance models; and
• Load balancing amongst computing sites;

Server consolidation has been investigated in previous work [5, 8, 16, 18, 20, 34,
39, 40]. A key component of these systems is the ability to monitor and estimate
the workload of applications or the arrival of user requests. Several techniques have
been applied to estimate the load of a system, such as exponential moving aver-
ages [4], Kalman filters [17], autoregressive models, and combinations of methods
[5, 19]. Provisioning VMs in an IaaS environment poses additional challenges as in-
formation about the user applications is not always readily available. Section 7.4.3
describes an algorithm for predicting the characteristics of advance reservation re-
quests that resemble requests for allocating virtual machines.

Fitted with workload-estimation techniques, these systems provide schemes to
minimize the energy consumed by the underlying infrastructure while minimizing
costs and violations of Service Level Agreements (SLAs). Chase et al. [5] intro-
duced MUSE, an economy-based system that allocates resources of hosting cen-
tres to services aiming to minimize energy consumption. Services bid for resources
as a function of delivered performance whilst MUSE switches unused servers off.
Kalyvianaki et al. [18] introduced autonomic resource provisioning using Kalman
filters. Kusic et al. proposed a lookahead control scheme for constantly optimizing
the power efficiency of a virtualized environment [20]. With the goal of maximiz-
ing the profit yielded by the system while minimizing the power consumption and
SLA violations, the provisioning problem is modelled as a sequential optimization
under uncertainty and is solved using the lookahead control scheme. Placement of
applications and scheduling can also take into account the thermal states or the heat
dissipation in a data centre [24]. The goal is scheduling workloads in a data cen-
tre and the heat they generate, in a manner that minimises the energy required by
the cooling infrastructure, hence aiming to minimize costs and increase the overall
reliability of the platform.

7 Energy Aware Clouds 147

Although consolidation fitted with load forecasting schemes can reduce the over-
all number of resources used to serve user applications, the actions performed by
RMSs to adapt the environment to match the application demands can require the
relocation and reconfiguration of VMs. That can impact the response time of appli-
cations, consequently degrading the QoS perceived by end users. Hence, it is impor-
tant to consider the costs and benefits of the adaptation actions [40]. For example,
Gueyoung et al. [16] have explored a cost-sensitive adaptation engine that weights
the potential benefits of reconfiguration and their costs. A cost model for each ap-
plication is built offline, and to decide when and how to reconfigure the VMs, the
adaptation engine estimates the cost of adaptation actions in terms of changes in the
utility, which is a function of the application response time. The benefit of an action
is given by the improvement in application response time and the period over which
the system remains in the new configuration.

Moreover, consolidation raises the issue of dealing with necessary redundancy
and placement geodiversity at the same time. Cloud providers, as Salesforce.com
for example, that offer to host entire websites of private companies [11], do not
want to lose entire company websites because of power outages or network access
failures. Hence, outage and blackout situations should be anticipated and taken into
account in the resource management policies [32].

While the macro-level resource management performs actions that generally take
into account the power consumption of a group of resources or the whole data cen-
tre, at the host-level the power management is performed by configuring parameters
of the hypervisor’s scheduler, such as throttling of Virtual CPUs (VCPU), and us-
ing other OS specific policies. In the proposed architectures, hosts generally run a
local resource manager that is responsible for monitoring the power consumption of
the host and optimizing it according to local policies. The power management ca-
pabilities available in virtualized hosts has been categorized as [25]: “soft” actions
such as CPU idling and throttling; “hard” actions like DVFS; and consolidating in
the hypervisor. CPU idling or soft states consist in changing resource allotments of
VMs and attributes of the hypervisor’s scheduler (e.g. number of credits in Xen’s
credit scheduler) to reduce the CPU time allocated to a VM so that it consumes less
power. Hard actions comprise techniques such as scaling the voltage and frequency
of CPUs. Consolidation can also be performed at the host-level where the VCPUs
allocated to VMs can be configured to share CPU cores, putting unused cores in idle
state, hence saving the energy that would otherwise be used by the additional core
to run a VM.

Nathuji and Schwan [25] presented VirtualPower, a power management sys-
tem for virtualized environments that explores both hardware power scaling and
software-based methods to control the power consumption of underlying platforms.
VirtualPower exports a set of power states to VM guests that allow guests to use
and act upon these states, thus performing their own power management policies.
The soft states are intercepted by Xen hypervisor and are mapped to changes in the
underlying hardware such as CPU frequency scaling according to the virtual power
management rules. The power management policies implemented in the guest VMs
are used as “hints” by the hypervisor rather than executable commands. They also

148 A.-C. Orgerie et al.

evaluate the power drawn by cores at different frequency/voltage levels and suggest
that such technique be used along with soft schemes.

7.3 Investigating the Energy Consumption of Virtual Machines

With the aim of integrating soft schemes such as CPU throttling, the next sections
describe simple experiments to evaluate the distance between the idle consumption
and the consumption at high utilization of virtualized servers. The experiments eval-
uate the additional power drawn by VMs and the impact of operations such as CPU
idling, consolidation at the host level and VM live-migration.

7.3.1 Experimental Scenario

The evaluation has been performed on a testbed composed of HP Proliant 85 G2
servers (2.2 GHz, 2 duo core CPUs per node) with Xen open source 3.4.1. Each node
is connected to an external wattmeter that logs its instant power consumption; one
measurement is taken each second. The storage of these energy logs is performed
by a data collector machine. The precision of measurements of this setup is 0.125
watts, whereas the frequency of measurements is one second.

7.3.2 Virtual Machine Cost

In order to be energy efficient, virtual machines should ideally start and halt quickly
and without incurring too much energy usage. It is hence crucial to understand the
cost of basic virtual machine operations and statuses (such as boot, run, idle, halt)
in terms of energy consumption.

The experiments reported here describe the stages of booting, running and shut-
ting down virtual machines. Each virtual machine is configured to use one VCPU
without pinning (i.e. we do not restrict which CPUs a particular VCPU may run
on using the generic vcpu-pin interface) and no capping of CPU credits. We mea-
sure the energy consumption by running different configurations, one at a time, each
with a different number of virtual machines, from one to six virtual machines on one
physical resource.

The graph in Fig. 7.1 shows the energy consumption of virtual machines that are
initialized but do not have a workload (i.e. they do not execute any application after
booting). As shown by this figure, the start and shutdown phases of VMs consume an
amount of energy that should not be ignored when designing resource provisioning
or consolidation mechanisms. The graph in Fig. 7.2, on the other hand, shows the
consumption of virtual machines that execute a CPU intensive sample application

7 Energy Aware Clouds 149

Fig. 7.1 Energy consumption of different numbers of idle virtual machines on one physical ma-
chine

Fig. 7.2 Energy consumption of virtual machines running a CPU intensive workload on a shared
physical resource

(i.e. cpuburn1) once they finish booting. The CPU intensive workload runs for 60

1cpuburn is a test application that attempts to use 100% of CPU.

150 A.-C. Orgerie et al.

seconds once the virtual machine is initialized, and we wait for some time before
shutting it down to recognize more clearly the shutdown stage in the graphs.

As shown by Fig. 7.2, the increase in energy consumption resulting from increas-
ing the number of virtual machines in the system depends largely on the number of
cores in use. Although the 5th and 6th VMs seem to come at zero cost in terms of
energy consumption since all the cores were already in use, in reality the application
performance can be degraded. We have not evaluated the performance in this work
since we run a sample application, but in future we intend to explore the perfor-
mance degradation and the trade-off between application performance and energy
savings.

7.3.3 Migration Cost

This experiment evaluates the energy consumption when performing live migration
of four virtual machines running a CPU intensive workload. After all virtual ma-
chines are initialized, at time 40 seconds, the live migration starts, and one virtual
machine is migrated at every 30 seconds. The results are summarized in Fig. 7.3.

The figure shows that migrating VMs lead to an increase in energy consump-
tion during the migration time, the factor evidenced by the asymmetry between the
lines. Even though the VMs migrated in this scenario had only 512 MB of RAM,
the experiment demonstrates that when migrating with the goal of shutting down
unused resources, one must consider that during the migration, two machines will
be consuming energy.

Fig. 7.3 Migration of four virtual machines starting after 40 seconds, one migration every 30
seconds

7 Energy Aware Clouds 151

7.3.4 Capping and Pinning of VCPUs

This experiment measures the energy consumption of virtual machines when we
vary parameters of the credit scheduler used by Xen hypervisor. The first parameter
evaluated is the cap of CPU utilization. Valid values for the cap parameter when
using one virtual CPU are between 1 and 100, and the parameter is set using the
xm sched-credit command. Initially, we run a virtual machine with a CPU-intensive
workload and measure the energy consumption as we change the CPU cap. The
experiment considers the following caps: 100, 80, 60, 40 and 20. Once the virtual
machine is initialized and the CPU intensive workload is started, the virtual machine
remains during one minute under each cap and is later shut down. The results are
summarized in Fig. 7.4.

Although capping has an impact on power consumption, this impact is small
when considering only one core, and under some cap values, the energy consump-
tion does not remain stable. However, the difference in consumption is more notice-
able when throttling the CPU usage of multiple VMs.

When virtual machines are initialized, the credit scheduler provided by Xen hy-
pervisor is responsible for deciding which physical cores the virtual CPUs will uti-
lize. However, the assignment of virtual CPUs to physical cores can be modified by
the administrator via Xen’s API by restricting the physical cores used by a virtual
machine, operation known as “pinning”. The second set of experiments described
here evaluate the energy consumption when changing the default pinning carried
out by Xen’s hypervisor.

This experiment first initializes two VMs with the CPU intensive workload; then,
leaves them run under default pinning for one minute; after that, throttles the VCPUs

Fig. 7.4 Energy consumption of a virtual machine under different CPU utilization caps

152 A.-C. Orgerie et al.

Fig. 7.5 Energy consumption by making the virtual CPUs of two VMs share the same core

by forcing them to share the same core; next, changes the core to which the VCPUs
are pinned at each minute; after that, removes pin restrictions; and finally shuts down
the VMs. Figure 7.5 summarizes the results.

The energy consumption reduces as the number of utilized cores in the system
decreases. Although this may look obvious, the results demonstrate that it is possible
to consolidate a workload at the host level and minimize the energy consumption by
using capping. For example, a hosting centre may opt for consolidating workloads
if a power budget has been reached or to minimize the heat produced by a group of
servers. Our future work will be investigating the trade-off’s between performance
degradation and energy savings achieved by VCPU throttling when provisioning
resources to multi-tier Web applications.

7.4 The Green Open Cloud

7.4.1 The Green Open Cloud Architecture

The energy footprint of current data centres has become a critical issue, and it has
been shown that servers consume a great amount of electrical power even when
they are idle [28]. Existing Cloud architectures do not take full advantage of recent
techniques for power management, such as Virtual Machine (VM) live migration,
advance reservations, CPU idling, and CPU throttling [25].

We attempt to make use of recent technologies to improve the energy efficiency
of Clouds, thus placing our work in the context of future Clouds. This work proposes

7 Energy Aware Clouds 153

Fig. 7.6 The GOC architecture

an energy-aware framework termed as Green Open Cloud (GOC) [21] to manage
Cloud resources. Benefiting from the workload consolidation [34] enabled by re-
source virtualization, the goal of this framework is to curb the energy consumption
of Clouds without sacrificing the quality of service (in terms of performance, re-
sponsiveness and availability) of user applications.

In the proposed architecture, users submit their reservation requests via a Cloud
portal (e.g. a Web server) (Fig. 7.6). A reservation request submitted by a user to
the portal contains the required number of VMs, its duration and the wished start
time. GOC manages an agenda with resource reservations; all reservations are strict,
and once approved by GOC, their start times cannot change. This is like a green
Service Level Agreement (SLA) where the Cloud provider commits to give access to
required resources (VMs) during the entire period that is booked in the agenda. This
planning provides a great flexibility to the provider that can have a better control on
how the resources are provisioned.

Following the pay-as-you-go philosophy of Clouds, the GOC framework deliv-
ers resources in a pay-as-you-use manner to the provider: only utilized resources are
powered on and consume electricity. The first step to reduce electricity wastage is to
shut down physical nodes during idle periods. However, this approach is not trivial
as a simple on/off policy can be more energy consuming than doing nothing because
powering nodes off and on again consumes electricity and takes time. Hence, GOC
uses prediction algorithms to avoid frequent on/off cycles. VM migration is used
to consolidate the load into fewer resources, thus allowing the remaining resources
to be switch off. VCPU pinning and capping are used as well for workload con-
solidation. GOC can also consolidate workloads considering time by aggregating
resource reservations. When a user submits a reservation request, the Green Open
Cloud framework suggests alternative start times for the reservation request along
with the predicted amount of energy it will consume under the different scenarios. In

154 A.-C. Orgerie et al.

this way, the user can make an informed choice and favor workload aggregation in
time, hence avoiding excessive on/off cycles. On/off algorithms also pose problems
for resource management systems, which can interpret a switched-off node as a fail-
ure. To address this issue, GOC uses a trusted proxy that ensures the nodes’ network
presence; the Cloud RMS communicates with this proxy instead of the switched-off
nodes (Fig. 7.6).

The key functionalities of the GOC framework are to:

• monitor Cloud resources with energy sensors to take efficient management deci-
sions;

• provide energy usage information to users;
• switch off unused resources to save energy;
• use a proxy to ensure network presence of switched-off resources and thus pro-

vide inter-operability with different RMSs;
• use VM migration to consolidate the load of applications in fewer resources;
• predict the resource usage to ensure responsiveness; and
• give “green” advice to users in order to aggregate resource requests.

The GOC framework works as an overlay atop existing Cloud resource man-
agers. GOC can be used with all types of resource managers without impacting on
their workings, such as their scheduling policies. This modular architecture allows
a great flexibility and adaptivity to any type of future Cloud’s RMS architecture.
The GOC framework relies on energy sensors (wattmeters) to monitor the electric-
ity consumed by the Cloud resources. These sensors provide direct and accurate
assessment of GOC policies, which helps it in using the appropriate power manage-
ment solutions.

The GOC architecture, as described in Fig. 7.6, comprises:

• a set of energy sensors providing dynamic and precise measurements of power
consumption;

• an energy data collector which stores and provides the energy logs through the
Cloud Web portal (to increase the energy-awareness of users);

• a trusted proxy for supporting the network presence of switched-off Cloud re-
sources; and

• an energy-aware resource manager and scheduler which applies the green policies
and gives green advice to users.

The Cloud RMS manages the requests in coordination with the energy-aware
resource manager which is permanently linked to the energy sensors. The energy-
aware resource manager of GOC can be implemented either as an overlay on the
existing Cloud RMS or as a separate service. Figure 7.7 depicts a scenario where
GOC is implemented as an overlay on the existing Cloud RMS. In the resource
manager, the white boxes represent the usual components of a future Cloud RMS
(with agenda), whereas the shaded boxes depict the GOC functionalities. These add-
ons are connected to the RMS modules and have access to the data provided by users
(i.e. submitted requests) and the data in the reservation agenda.

When a user submits a request, the admission control module checks whether it
can be admitted into the system by attempting to answer questions such as: Is the

7 Energy Aware Clouds 155

Fig. 7.7 The GOC resource manager

user allowed to use this Cloud? Is the request valid? Is the request compliant with
the Cloud’s usage chart? Then, the job acceptance module transfers the request to
the scheduler and to the green resource manager (also called energy-aware manager
and labeled “Green Policies” in Fig. 7.7). The scheduler queries the agenda to see
whether the requested reservation can be placed into it whilst the green resource
manager uses its aggregation and prediction modules to find other less energy-
consuming possibilities to schedule this reservation in accordance with its green
policies. All the possible schedules (from the Cloud’s scheduler and from the green
resource manager) are then transferred to the job acceptance module which presents
them to the user and prompts her for a reply.

The agenda is a database containing all the future reservations and the recent his-
tory (used by the prediction module). The green agenda contains all the decisions
of the green resource manager: on/off and VM migrations (when to switch on and
off the nodes and when to migrate VMs). These decisions are applied by the green
enforcement module. The resource enforcement module manages the reservations
(gives the VMs to the users) in accordance with the agenda. The resource status
component periodically polls the nodes to know whether they have hardware fail-
ures. If the nodes are off, the component queries the network presence proxy, so the
nodes are not woken up unnecessarily. The energy data collector module monitors
the energy usage of the nodes and gives access to this information to the green re-
source manager. These data are also put on the Cloud Web portal, so users can see
their energy impact on the nodes and increase their energy-awareness.

7.4.2 Network Presence

As we switch off unused nodes, they do not reply to queries made by the Cloud
resource manager, which can be considered by the RMS as a resource failure. This
problem is solved by using a trusted proxy to ensure the network presence of the
Cloud resources. When a Cloud node is switched off, all of its basic services (such as

156 A.-C. Orgerie et al.

ping or heartbeat services) are migrated to the proxy that will then answer on behalf
of the node when asked by the resource manager. The key issue is to ensure the
security of the infrastructure and to avoid the intrusion of malicious nodes. Our trust-
delegation model is described in more details in previous work [7]. This mechanism
allows a great adaptivity of the GOC framework to any Cloud RMS.

7.4.3 Prediction Algorithms

As reservations finish, the prediction algorithm predicts the next reservation for the
freed resources. If the predicted reservation of a resource is too close (in less than
Ts seconds), the resource remains powered on (it would consume more energy to
switch it off and on again), otherwise it is switched off. This idea is illustrated by
Fig. 7.8.

For a given resource, Ts is given by the following formula:

Ts = EON→OFF + EOFF→ON − POFF(δON→OFF + δOFF→ON)

Pidle − POFF

where Pidle is the idle consumption of the resource (in Watts), POFF is the power
consumption when the resource is off (in watts), δON→OFF is the duration of the
resource shutdown (in seconds), δOFF→ON is the duration of the resource boot,
EON→OFF is the energy consumed to switch off the resource (in Joules) and
EOFF→ON is the energy consumed to switch on the resource (in Joules).

In the same way, we define temporal parameters based on the energy consump-
tion of the resources to know in which case it would be more energy efficient to

Fig. 7.8 Definition of Ts

7 Energy Aware Clouds 157

use VM migration. Tm is the bound on the remaining reservation’s duration beyond
which migration is more energy efficient: if the reservation is still running for more
than T − m seconds, the VMs should be migrated, otherwise they stay on their re-
spective physical hosts. As the migration takes time, migration of small jobs is not
useful (with a duration lower than 20 seconds in that example). This lower time
bound is denoted Ta . If a migration is allowed, the green enforcement module also
waits Ta seconds after the beginning of a job before migrating it. It indeed allows
initializing the job and the VM, so the migration is simplified, and we avoid the
migration of small jobs, crashed jobs or VMs (in case of technical failure or bad
configuration of the VM).

For the next reservation, the predicted arrival time is the average of the inter-
submission time of the previous jobs plus a feedback. The feedback is computed
with the previous predictions; it represents an average of the errors made by com-
puting the n previous predictions (n is an integer). The error is the difference be-
tween the true observation and the predicted value. For estimating other features of
the reservation (size in number of resources and length), the same kind of algorithm
is used (average of the previous values at a given time).

We have seen in previous work [27] that even with a small n (5 for example)
we can obtain good results (70% of good predictions on experimental Grid traces).
This prediction model is simple, but it does not need many accesses and is really fast
to compute, which are crucial features for real-time infrastructures. This prediction
algorithm has several advantages: it works well, it requires a small part of history
(no need to store big amounts of data), and it is fast to compute. Therefore, it will
not delay the whole reservation process, and as a small part of the history is used,
it is really responsive and well adapted to request bursts as it often occurs in such
environments.

7.4.4 Green Policies

Among the components of a Cloud architecture, up to now, we have focused on
virtualization, which appears as the main technology used in these architectures. It
also uses migration to dynamically unbalance the load between the Cloud nodes in
order to shut down some nodes and thus save energy.

However, GOC algorithms can employ other Cloud components, like account-
ing, pricing, admission control and scheduling. The role of the green policies is to
implement such strong administrator decisions at the Cloud level. For example, the
administrator can establish a power budget per day or per user. The green policies
module will reject any reservation request that exceeds the power budget limit. This
mechanism is similar to a green SLA between the user and the provider.

Green accounting will give to “green” users (the users that accept to delay their
reservation in order to aggregate it with others to save energy) credits which are
used to give more priority to the requests of these users when a burst of reservation
requests arrives. A business model can also lean on this accounting to encourage
users to be energy aware.

158 A.-C. Orgerie et al.

7.5 Scenario and Experimental Results

7.5.1 Experimental Scenario

This section describes the first results obtained with a prototype of GOC. Our ex-
perimental platform consists of HP Proliant 85 G2 Servers (2.2 GHz, 2 dual core
CPUs per node) with XenServer 5.02 [1, 3] on each node.

The following experiments aim to illustrate the working of GOC infrastructure
in order to highlight and to compare the energy consumption induced by a Cloud
infrastructure with different management schemes. Our experimental platform con-
sists of two identical Cloud nodes, one resource manager that is also the scheduler
and one energy data collector. All these machines are connected to the same Ether-
net router. In the following we will call ‘job’ a reservation made by a user to have the
resources at the earliest possible time. When a user submits a reservation, she spec-
ifies the length in time and the number of resources required. Although this reserva-
tion mechanism may look unusual, it is likely to be used by next-generation Clouds
where frameworks would support these features to help cloud providers avoid over-
provisioning resources. Having scheduling reservations with limits, such as a time
duration, will help Cloud managers to manage their resources in a more energy-
efficient way. This is, for instance, the case of a user with budget constraints and
whose reservations will have a defined time-frame that reflects how much the user
is willing to pay for using the resources. In addition, this reflects a scenario where
service clouds with long-live applications have their resource allotments adapted ac-
cording to changes in cost conditions (e.g. cost changes in electricity) and scheduled
maintenances.

Our job arrival scenario is as follows:

• t = 10: 3 jobs of length equals to 120 seconds each and 3 jobs of length 20 sec-
onds each;

• t = 130: 1 job of length 180 seconds;
• t = 310: 8 jobs of length 60 seconds each;
• t = 370: 5 jobs of length 120 seconds each, 3 jobs of length 20 seconds each and

1 job of length 120 seconds, in that order.

The reservations’ length is short in order to keep the experiment and the graph
representation readable and understandable. Each reservation is a computing job
with a cpuburn running on the VM. We have seen that the boot and the shutdown
of a VM are less consuming than a cpuburn and that an idle VM does not consume
any noticeable amount of energy (see Fig. 7.2). Hence, we will just include the
cpuburn burn phase in the graphs in order to reduce their length and improve their
readability (VMs are booted before the experiment start and halted after the end of
the experiment).

2XenServer is a cloud-proven virtualization platform that delivers the critical features of live mi-
gration and centralized multi-server management.

7 Energy Aware Clouds 159

Fig. 7.9 Gantt chart for the round-robin scheduling

These experiments, although in a small scale for clarity sake, represent the most
unfavorable case in terms of energy consumption as cpuburn fully uses the CPU
which is the most energy consuming component of physical nodes. Moreover, as
CPU is a great energy consuming component, cpuburn jobs are accurately visible
on the power consumption curves: clear steps are noticeable for each added VM (as
previously noticed in Fig. 7.2).

Each node can host up to seven VMs. All the hosted VMs are identical in terms
of memory and CPU configuration, and they all host a Debian etch distribution. As
our infrastructure does not depend on any particular resource manager, we do not
change the scheduling of the reservations and the assignment of the virtual machines
to physical machines. The only exception is when a physical node is off, where we
then attribute its jobs to the awoken nodes if they can afford it; otherwise we switch
it on.

In order to validate our framework and to prove that it achieves energy saving
regardless of the underlying scheduler, we have studied two different schedulings:

• round-robin: first job is assigned to the first Cloud node, the second job to the
second node, and so on. When all the nodes are idle, the scheduler changes their
order (we do not always attribute the first job in the queue to the first node).
The behavior of this scheduling mechanism with the previously defined job ar-
rival scenario is shown in Fig. 7.9. This is a typical distributed-system scheduling
algorithm.

• unbalanced: the scheduler puts as many jobs as possible on the first Cloud node,
and, if there are still jobs left in the queue, it uses the second node, and so on
(as before, when all the nodes are idle, we change the order to balance the roles).
We can see this scheduling with the previously defined job arrival scenario in
Fig. 7.10. This scheduling is broadly used for load consolidation.

These two scheduling algorithms are well known and widely used in large-scale
distributed system schedulers. For each of these algorithms, we use four scenarios
to see the difference between our VM management scheme and a basic one. The
four scenarios are as follows:

• basic: no changes are made. This scenario represents the Clouds with no power
management.

160 A.-C. Orgerie et al.

Fig. 7.10 Gantt chart for the unbalanced scheduling

• balancing: migration is used to balance the load between the Cloud nodes. This
scenario presents the case of a typical load balancer which aims to limit node
failures and heat production.

• on/off : unused nodes are switched off. This is the scenario with a basic power
management;

• green: we switch off the unused nodes, and we use migration to unbalance the
load between Cloud nodes. This allows us to aggregate the load on some nodes
and switch off the other ones. This is the scenario that corresponds to GOC.

7.5.2 Results

For each scheduling, we have run the four scenarios, one at a time, on our exper-
imental platform, and we have logged the energy consumption (one measure per
node and per second at the precision of 0.125 watts). A more extensive discussion
on the results is available in previous work [21].

Figure 7.11 shows the course of experiment for the two nodes with the round-
robin scheduling applied to the green scenario. The upper part of the figure shows
the energy consumption of the two nodes during the experiment, while the lower
part presents the Gantt chart (time is in seconds).

At time t = 30, the second job (first VM on Cloud node 2) is migrated to free
Cloud node 1 and then to switch it off. This migration does not occur before Ta = 20
seconds. Some small power peaks are noticeable during the migration. This confirms
the results of Sect. 7.3.3 stating that migration is not really costly if it is not too long.

This migration leads to the reallocation of the job starting at t = 130 on Cloud
node 1 since Cloud node 2 has been switched off and Cloud node 1 is available.
At t = 200, Cloud node 2 is booted to be ready to receive the jobs starting at t =
310. During the boot, an impressive consumption peak occurs. It corresponds to the
physical start of all the fans and the initialization of all the node components. Yet,
this peak is more than compensated by the halting of the node (POFF = 20 watts)
during the time period just before the boot since the node inactivity time was greater
than Ts (defined in Sect. 7.4.3).

7 Energy Aware Clouds 161

Fig. 7.11 Green scenario with round-robin scheduling

During the seventh job, one can notice that a running VM with a cpuburn inside
consumes about 10 watts, which represents about 5% of the idle consumption of
the Cloud node. At time t = 390, two new VM migrations are performed, and they
draw small peaks on the power consumption curves. From that time, Cloud node 1
is switched off, and Cloud node 2 has six running VMs. We observe that the fifth
and the sixth VMs cost nothing (no additional energy consumption compared to
the period with only four VMs) as explained in Sect. 7.3.2 as this Cloud node has
four cores. This experiment shows that GOC greatly takes advantage of the idle
periods by using its green enforcement solutions: VM migration and shut down. Job
reallocation also allows us to avoid on/off cycles. Significant amounts of energy are
saved.

The green scenario with unbalanced scheduling is presented in Fig. 7.12. For
the green scenario, the unbalanced scheduling is more in favor of energy savings.
Indeed, two migrations less are needed than with the round-robin scheduling, and
all the first burst jobs are allocated to Cloud node 1 allowing Cloud node 2 to stay
off. In fact, this is the general case for all the scenarios (Fig. 7.13): the unbalanced
scheduling is more energy-efficient since it naturally achieves a better consolidation
on fewer nodes.

Summarized results of all the experiments are shown in Fig. 7.13. As expected,
the green scenario which illustrates GOC behavior is less energy consuming for the
both scheduling scenarios. The balancing scenario is more energy consuming than
the basic scheme for unbalanced scheduling. This phenomenon is due to numerous
migrations for the balancing scenario that cancel out the benefits of these migrations.

162 A.-C. Orgerie et al.

Fig. 7.12 Green scenario with unbalanced scheduling

Fig. 7.13 Comparison results

The noticeable figure is that the green scenario with unbalanced scheduling con-
sumes 25% less electricity than the basic scenario which shows the current Clouds
administration. This figure obviously depends on the Cloud usage.

However, it shows that great energy savings are achievable with minor impacts
on the utilization: small delays occur due to migrations (less than 5 seconds for

7 Energy Aware Clouds 163

these experiments) and to physical node boots (2 minutes for our experimental plat-
form nodes). These delays can be improved by using better VM live-migration tech-
niques [13] and by using faster booting techniques (like suspend to disk and suspend
to RAM techniques).

7.6 Conclusion

As Clouds are more and more broadly used, the Cloud computing ecosystem be-
comes a key challenge with strong repercussions. It is therefore urgent to analyse
and to encompass all the stakeholders related to the Cloud’s energy usage in order
to design adapted framework solutions. It is also essential to increase the energy-
awareness of users in order to reduce their CO2 footprint induced by their utiliza-
tions of Cloud infrastructures. This matter leads us to measure and to study the
electrical cost of basic operations concerning the VM management in Clouds, such
as the boot, the halt, the inactivity and the launching of a sample cpuburn appli-
cation. These observations show that VMs do not consume energy when they are
idle and that booting and halting VMs produce small power peaks but are not really
costly in terms of time and energy.

As Clouds are on the way to becoming an essential element of future Internet,
new technologies have emerged for increasing their capacity to provide on-demand
XaaS (everything as a service) resources in a pay-as-you-use fashion. Among these
new technologies, live migration seems to be a really promising approach allowing
on-demand resource provisioning and consolidation. We have studied the contribu-
tion that the use of this technique could constitute in terms of energy efficiency.
VM live migration, although its performance can be improved, is reliable, fast, and
requires little energy compared to the amount it can save.

These first measurements have allowed us to propose an original software frame-
work, the Green Open Cloud (GOC) which aims at controlling and optimizing the
energy consumed by the overall Cloud infrastructure. This energy management is
based on different techniques:

• energy monitoring of the Cloud resources with energy sensor for taking efficient
management decisions;

• displaying the energy logs on the Cloud portal to increase the energy-awareness;
• switching off unused resources to save energy;
• utilization of a proxy to carry out network presence of switched-off resources and

thus provide inter-operability with any kind of RMS;
• use of VM migration to consolidate the load in fewer resources;
• prediction of the next resource usage to ensure responsiveness;
• giving green advice to users in order to aggregate resources’ reservations.

The GOC framework embeds features that, in our opinion, will be part of the
next-generation Clouds, such as advance reservations, which enable a more flexible
and planned resource management, and VM live-migration, which allows for great
workload consolidation.

164 A.-C. Orgerie et al.

Further, the GOC framework was the subject of an experimental validation. The
validation is made with two different scheduling algorithms to prove GOC’s adaptiv-
ity to any kind of Resource Management System (RMS). Four scenarios are studied
to compare the GOC behavior with basic Cloud’s RMS workings. Energy measure-
ments on these scenarios show that GOC can save up to 25% of the energy consumed
by a basic Cloud resource management. These energy savings are also reflected in
the operational costs of the Cloud infrastructures.

This promising work shows that important energy savings, and thus CO2 foot-
print reductions are achievable in future Clouds at the cost of minor performance
degradations. There is still room for improvement to increase the user’s energy-
awareness, which is the main leverage to trigger a real involvement from the Cloud
providers and designers in order to reduce the electricity demand of Clouds and
contribute to a more sustainable ICT industry.

References

1. Citrix xenserver. URL http://citrix.com/English/ps2/products/product.asp?contentID=683148
2. Make it green—cloud computing and its contribution to climate change. Greenpeace interna-

tional (2010)
3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,

I., Warfield, A.: Xen and the art of virtualization. In: 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), pp. 164–177. ACM, New York (2003). doi:10.1145/945445.
945462

4. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd
edn. Prentice-Hall International, New York (1994)

5. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing energy and
server resources in hosting centers. In: 18th ACM Symposium on Operating Systems Princi-
ples (SOSP ’01), pp. 103–116. ACM, Banff (2001)

6. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live
migration of virtual machines. In: NSDI’05: Proceedings of the 2nd Conference on Sympo-
sium on Networked Systems Design & Implementation, Berkeley, CA, USA, pp. 273–286
(2005)

7. Da-Costa, G., Gelas, J.P., Georgiou, Y., Lefèvre, L., Orgerie, A.C., Pierson, J.M., Richard, O.,
Sharma, K.: The green-net framework: energy efficiency in large scale distributed systems.
In: HPPAC 2009: High Performance Power Aware Computing Workshop in Conjunction with
IPDPS 2009, Roma, Italy (2009)

8. Doyle, R.P., Chase, J.S., Asad, O.M., Jin, W., Vahdat, A.M.: Model-based resource provision-
ing in a Web service utility. In: 4th Conference on USENIX Symposium on Internet Technolo-
gies and Systems (USITS’03), p. 5. USENIX Association, Berkeley (2003)

9. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In:
ISCA ’07: Proceedings of the 34th Annual International Symposium on Computer Architec-
ture, New York, NY, USA, pp. 13–23 (2007). doi:10.1145/1250662.1250665

10. Fontán, J., Vázquez, T., Gonzalez, L., Montero, R.S., Llorente, I.M.: OpenNEbula: the open
source virtual machine manager for cluster computing. In: Open Source Grid and Cluster
Software Conference—Book of Abstracts, San Francisco, USA (2008)

11. Hamm, S.: With Sun, IBM Aims for Cloud Computing Heights (26 March 2009).
URL http://www.businessweek.com/magazine/content/09_14/b4125034196164.htm?chan=
magazine+channel_news

http://citrix.com/English/ps2/products/product.asp?contentID=683148
http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1145/1250662.1250665
http://www.businessweek.com/magazine/content/09_14/b4125034196164.htm?chan=magazine+channel_news
http://www.businessweek.com/magazine/content/09_14/b4125034196164.htm?chan=magazine+channel_news

7 Energy Aware Clouds 165

12. Harizopoulos, S., Shah, M.A., Meza, J., Ranganathan, P.: Energy efficiency: the new holy grail
of data management systems research. In: Fourth Biennial Conference on Innovative Data
Systems Research (CIDR) (2009). URL http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_
112.pdf

13. Hirofuchi, T., Nakada, H., Ogawa, H., Itoh, S., Sekiguchi, S.: A live storage migration mecha-
nism over wan and its performance evaluation. In: VTDC ’09: Proceedings of the 3rd Interna-
tional Workshop on Virtualization Technologies in Distributed Computing, pp. 67–74. ACM,
New York (2009). doi:10.1145/1555336.1555348

14. Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., Takahashi, D.: Profile-based opti-
mization of power performance by using dynamic voltage scaling on a PC cluster. In: IPDPS
(2006). doi:10.1109/IPDPS.2006.1639597

15. Iosup, A., Dumitrescu, C., Epema, D., Li, H., Wolters, L.: How are real grids used? the analysis
of four grid traces and its implications. In: 7th IEEE/ACM International Conference on Grid
Computing (2006)

16. Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: A cost-sensitive adaptation
engine for server consolidation of multitier applications. In: 10th ACM/IFIP/USENIX Interna-
tional Conference on Middleware (Middleware 2009), pp. 1–20. Springer, New York (2009)

17. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME,
J. Basic Eng. 82(Series D), 35–45 (1960)

18. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured CPU resource
provisioning for virtualized servers using Kalman filters. In: 6th International Conference on
Autonomic Computing (ICAC 2009), pp. 117–126. ACM, New York (2009). doi:10.1145/
1555228.1555261

19. Kim, M., Noble, B.: Mobile network estimation. In: 7th Annual International Conference on
Mobile Computing and Networking (MobiCom 2001), pp. 298–309. ACM, New York (2001).
doi:10.1145/381677.381705

20. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and performance
management of virtualized computing environments via lookahead control. In: 5th Interna-
tional Conference on Autonomic Computing (ICAC 2008), pp. 3–12. IEEE Computer Society,
Washington (2008). doi:10.1109/ICAC.2008.31

21. Lefèvre, L., Orgerie, A.C.: Designing and evaluating an energy efficient cloud. J. Supercom-
put. 51(3), 352–373 (2010)

22. Liu, J., Zhao, F., Liu, X., He, W.: Challenges towards elastic power management in Inter-
net data centers. In: 29th IEEE International Conference on Distributed Computing Sys-
tems Workshops (ICDCSW 2009), pp. 65–72. IEEE Computer Society, Washington (2009).
doi:10.1109/ICDCSW.2009.44

23. Miyoshi, A., Lefurgy, C., Van Hensbergen, E., Rajamony, R., Rajkumar, R.: Critical power
slope: understanding the runtime effects of frequency scaling. In: ICS’02: Proceedings of
the 16th International Conference on Supercomputing, pp. 35–44. ACM, New York (2002).
doi:10.1145/514191.514200

24. Moore, J., Chase, J., Ranganathan, P., Sharma, R.: Making scheduling “cool”: temperature-
aware workload placement in data centers. In: USENIX Annual Technical Conference (ATEC
2005), pp. 5–5. USENIX Association, Berkeley (2005)

25. Nathuji, R., Schwan, K.: VirtualPower: Coordinated power management in virtualized enter-
prise systems. In: 21st ACM SIGOPS Symposium on Operating Systems Principles (SOSP
2007), pp. 265–278. ACM, New York (2007). doi:10.1145/1294261.1294287

26. Nurmi, D., Wolski, R., Crzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,
D.: Eucalyptus: a technical report on an elastic utility computing architecture linking your
programs to useful systems. Technical report 2008-10, Department of Computer Science, Uni-
versity of California, Santa Barbara, California, USA (2008)

27. Orgerie, A.C., Lefèvre, L., Gelas, J.P.: Chasing gaps between bursts: towards energy efficient
large scale experimental grids. In: PDCAT 2008: The Ninth International Conference on Par-
allel and Distributed Computing, Applications and Technologies, pp. 381–389. Dunedin, New
Zealand (2008)

http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_112.pdf
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_112.pdf
http://dx.doi.org/10.1145/1555336.1555348
http://dx.doi.org/10.1109/IPDPS.2006.1639597
http://dx.doi.org/10.1145/1555228.1555261
http://dx.doi.org/10.1145/1555228.1555261
http://dx.doi.org/10.1145/381677.381705
http://dx.doi.org/10.1109/ICAC.2008.31
http://dx.doi.org/10.1109/ICDCSW.2009.44
http://dx.doi.org/10.1145/514191.514200
http://dx.doi.org/10.1145/1294261.1294287

166 A.-C. Orgerie et al.

28. Orgerie, A.C., Lefèvre, L., Gelas, J.P.: Save watts in your grid: green strategies for energy-
aware framework in large scale distributed systems. In: 14th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), Melbourne, Australia, pp. 171–178 (2008)

29. Patterson, M., Costello, D., Grimm, P., Loeffler, M.: Data center TCO: a comparison of
high-density and low-density spaces. In: Thermal Challenges in Next Generation Elec-
tronic Systems (THERMES 2007) (2007). URL http://isdlibrary.intel-dispatch.com/isd/114/
datacenterTCO_WP.pdf

30. Sharma, R., Bash, C., Patel, C., Friedrich, R., Chase, J.: Balance of power: dynamic thermal
management for internet data centers. IEEE Internet Comput. 9(1), 42–49 (2005). doi:10.
1109/MIC.2005.10

31. Silicon Valley Leadership Group: Data center energy forecast. White Paper (2008). URL
svlg.org/campaigns/datacenter/docs/DCEFR_report.pdf

32. Singh, T., Vara, P.K.: Smart metering the clouds. In: IEEE International Workshop on Enabling
Technologies, pp. 66–71 (2009). doi:10.1109/WETICE.2009.49

33. Snowdon, D.C., Ruocco, S., Heiser, G.: Power management and dynamic voltage scaling:
myths and facts. In: Proceedings of the 2005 Workshop on Power Aware Real-time Computing
(2005)

34. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Pro-
ceedings of HotPower ’08 Workshop on Power Aware Computing and Systems (2008). URL
http://www.usenix.org/events/hotpower08/tech/full_papers/srikantaiah/srikantaiah/_html/

35. Subramanyam, S., Smith, R., van den Bogaard, P., Zhang, A.: Deploying Web 2.0 applica-
tions on Sun servers and the OpenSolaris operating system. Sun BluePrints 820-7729-10, Sun
Microsystems (2009)

36. Talaber, R., Brey, T., Lamers, L.: Using Virtualization to Improve Data Center Efficiency.
Tech. rep., The Green Grid (2009)

37. Tatezono, M., Maruyama, N., Matsuoka, S.: Making wide-area, multi-site MPI feasible using
Xen VM. In: Workshop on Frontiers of High Performance Computing and Networking (held
with ISPA 2006). LNCS, vol. 4331, pp. 387–396. Springer, Berlin (2006)

38. Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat, C., Mambretti, J., Monga, I., van
Oudenaarde, B., Raghunath, S., Wang, P.Y.: Seamless live migration of virtual machines over
the MAN/WAN. Future Gener. Comput. Syst. 22(8), 901–907 (2006). doi:10.1016/j.future.
2006.03.007

39. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provision-
ing of multi-tier internet applications. ACM Trans. Auton. Adapt. Syst. 3(1), 1–39 (2008).
doi:10.1145/1342171.1342172

40. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application
placement in virtualized systems. In: ACM/IFIP/USENIX 9th International Middleware Con-
ference (Middleware 2008), pp. 243–264. Springer, Berlin (2008). doi:10.1007/978-3-540-
89856-6_13

http://isdlibrary.intel-dispatch.com/isd/114/datacenterTCO_WP.pdf
http://isdlibrary.intel-dispatch.com/isd/114/datacenterTCO_WP.pdf
http://dx.doi.org/10.1109/MIC.2005.10
http://dx.doi.org/10.1109/MIC.2005.10
http://svlg.org/campaigns/datacenter/docs/DCEFR_report.pdf
http://dx.doi.org/10.1109/WETICE.2009.49
http://www.usenix.org/events/hotpower08/tech/full_papers/srikantaiah/srikantaiah/_html/
http://dx.doi.org/10.1016/j.future.2006.03.007
http://dx.doi.org/10.1016/j.future.2006.03.007
http://dx.doi.org/10.1145/1342171.1342172
http://dx.doi.org/10.1007/978-3-540-89856-6_13
http://dx.doi.org/10.1007/978-3-540-89856-6_13

Chapter 8
Jungle Computing: Distributed Supercomputing
Beyond Clusters, Grids, and Clouds

Frank J. Seinstra, Jason Maassen, Rob V. van Nieuwpoort, Niels Drost,
Timo van Kessel, Ben van Werkhoven, Jacopo Urbani, Ceriel Jacobs,
Thilo Kielmann, and Henri E. Bal

Abstract In recent years, the application of high-performance and distributed com-
puting in scientific practice has become increasingly wide spread. Among the most
widely available platforms to scientists are clusters, grids, and cloud systems. Such
infrastructures currently are undergoing revolutionary change due to the integration
of many-core technologies, providing orders-of-magnitude speed improvements for
selected compute kernels. With high-performance and distributed computing sys-

F.J. Seinstra (�) · J. Maassen · R.V. van Nieuwpoort · N. Drost · T. van Kessel ·
B. van Werkhoven · J. Urbani · C. Jacobs · T. Kielmann · H.E. Bal
Department of Computer Science, Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam,
The Netherlands
e-mail: fjseins@cs.vu.nl

J. Maassen
e-mail: jason@cs.vu.nl

R.V. van Nieuwpoort
e-mail: rob@cs.vu.nl

N. Drost
e-mail: niels@cs.vu.nl

T. van Kessel
e-mail: timo@cs.vu.nl

B. van Werkhoven
e-mail: ben@cs.vu.nl

J. Urbani
e-mail: jacopo@cs.vu.nl

C. Jacobs
e-mail: ceriel@cs.vu.nl

T. Kielmann
e-mail: kielmann@cs.vu.nl

H.E. Bal
e-mail: bal@cs.vu.nl

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_8, © Springer-Verlag London Limited 2011

167

mailto:fjseins@cs.vu.nl
mailto:jason@cs.vu.nl
mailto:rob@cs.vu.nl
mailto:niels@cs.vu.nl
mailto:timo@cs.vu.nl
mailto:ben@cs.vu.nl
mailto:jacopo@cs.vu.nl
mailto:ceriel@cs.vu.nl
mailto:kielmann@cs.vu.nl
mailto:bal@cs.vu.nl
http://dx.doi.org/10.1007/978-0-85729-049-6_8

168 F.J. Seinstra et al.

tems thus becoming more heterogeneous and hierarchical, programming complexity
is vastly increased. Further complexities arise because urgent desire for scalability
and issues including data distribution, software heterogeneity, and ad hoc hardware
availability commonly force scientists into simultaneous use of multiple platforms
(e.g., clusters, grids, and clouds used concurrently). A true computing jungle.

In this chapter we explore the possibilities of enabling efficient and transparent
use of Jungle Computing Systems in everyday scientific practice. To this end, we
discuss the fundamental methodologies required for defining programming models
that are tailored to the specific needs of scientific researchers. Importantly, we claim
that many of these fundamental methodologies already exist today, as integrated in
our Ibis high-performance distributed programming system. We also make a case
for the urgent need for easy and efficient Jungle Computing in scientific practice,
by exploring a set of state-of-the-art application domains. For one of these domains,
we present results obtained with Ibis on a real-world Jungle Computing System. The
chapter concludes by exploring fundamental research questions to be investigated
in the years to come.

8.1 Introduction

It is widely recognized that Information and Communication Technologies (ICTs)
have revolutionized the everyday practice of science [6, 54]. Whereas in earlier
times scientists spent a lifetime recording and analyzing observations by hand, in
many research laboratories today much of this work has been automated. The ben-
efits of automation are obvious: it allows researchers to increase productivity by
increasing efficiency, to improve quality by reducing error, and to cope with increas-
ing scale—enabling scientific treatment of topics that were previously impossible to
address.

As a direct result of automation, in many research domains the rate of scientific
progress is now faster than ever before [11, 14, 59]. Importantly, however, the rate of
progress itself puts further demands on the automation process. The availability of
ever larger amounts of observational data, for example, directly leads to increasing
needs for computing, networking, and storage. As a result, for many years, the sci-
entific community has been one of the major driving forces behind state-of-the-art
developments in supercomputing technologies (e.g., see [58]).

Although this self-stimulating process indeed allows scientists today to study
more complex problems than ever before, it has put a severe additional burden on
the scientists themselves. Many scientists have to rely on arguably the most complex
computing architectures of all—i.e., high-performance and distributed computing
systems in their myriad of forms. To effectively exploit the available processing
power, a thorough understanding of the complexity of such systems is essential. As
a consequence, the number of scientists capable of using such systems effectively
(if at all) is relatively low [44].

Despite the fact that there is an obvious need for programming solutions that
allow scientists to obtain high-performance and distributed computing both effi-
ciently and transparently, real solutions are still lacking [5, 24]. Worse even, the

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 169

high-performance and distributed computing landscape is currently undergoing rev-
olutionary change. Traditional clusters, grids, and cloud systems are more and
more equipped with state-of-the-art many-core technologies (e.g., Graphics Pro-
cessing Units or GPUs [31, 32]). Although these devices often provide orders-of-
magnitude speed improvements, they make computing platforms more heteroge-
neous and hierarchical—and vastly more complex to program and use.

Further complexities arise in everyday practice. Given the ever increasing need
for compute power, and due to additional issues including data distribution, software
heterogeneity, and ad hoc hardware availability, scientists are commonly forced to
apply multiple clusters, grids, clouds, and other systems concurrently—even for
single applications. In this chapter we refer to such a simultaneous combination of
heterogeneous, hierarchical, and distributed computing resources as a Jungle Com-
puting System.

In this chapter we explore the possibilities of enabling efficient and transparent
use of Jungle Computing Systems in everyday scientific practice. To this end, we
focus on the following research question:

What are the fundamental methodologies required for defining programming models that
are tailored to the specific needs of scientific researchers and that match state-of-the-art
developments in high-performance and distributed computing architectures?

We will claim that many of these fundamental methodologies already exist and have
been integrated in our Ibis software system for high-performance and distributed
computing [4]. In other words: Jungle Computing is not just a visionary concept; to
a large extent, we already adhere to its requirements today.

This chapter is organized as follows. In Sect. 8.2 we discuss several architec-
tural revolutions that are currently taking place—leading to the new notion of Jun-
gle Computing. Based on these groundbreaking developments, Sect. 8.3 defines the
general requirements underlying transparent programming models for Jungle Com-
puting Systems. Section 8.4 discusses the Ibis programming system and explores
to what extent Ibis adheres to the requirements of Jungle Computing. Section 8.5
sketches a number of emerging problems in various science domains. For each do-
main, we will stress the need for Jungle Computing solutions that provide trans-
parent speed and scalability. For one of these domains, Sect. 8.6 evaluates the Ibis
platform on a real-world Jungle Computing System. Section 8.7 introduces a num-
ber of fundamental research questions to be investigated in the coming years and
concludes.

8.2 Jungle Computing Systems

When grid computing was introduced over a decade ago, its foremost visionary
aim (or “promise”) was to provide efficient and transparent (i.e., easy-to-use) wall-
socket computing over a distributed set of resources [18]. Since then, many other
distributed computing paradigms have been introduced, including peer-to-peer com-
puting [25], volunteer computing [57], and, more recently, cloud computing [15].

170 F.J. Seinstra et al.

These paradigms all share many of the goals of grid computing, eventually aim-
ing to provide end-users with access to distributed resources (ultimately even at a
worldwide scale) with as little effort as possible.

These new distributed computing paradigms have led to a diverse collection of
resources available to research scientists, including stand-alone machines, cluster
systems, grids, clouds, desktop grids, etc. Extreme cases in terms of computational
power further include mobile devices at the low end of the spectrum and supercom-
puters at the top end.

If we take a step back and look at such systems from a high-level perspective,
then all of these systems share important common characteristics. Essentially, all
of these systems consist of a number of basic compute nodes, each having local
memories and each capable of communicating over a local or wide-area connection.
The most prominent differences are in the semantic and administrative organization,
with many systems providing their own middlewares, programming interfaces, ac-
cess policies, and protection mechanisms [4].

Apart from the increasing diversity in the distributed computing landscape, the
“basic compute nodes” mentioned above currently are undergoing revolutionary
change as well. General-purpose CPUs today have multiple compute cores per chip,
with an expected increase in the years to come [40]. Moreover, special-purpose
chips (e.g., GPUs [31, 32]) are now combined or even integrated with CPUs to in-
crease performance by orders-of-magnitude (e.g., see [28]).

The many-core revolution is already affecting the field of high-performance and
distributed computing today. One interesting example is the Distributed ASCI Su-
percomputer 4 (DAS-4), which is currently being installed in The Netherlands. This
successor to the earlier DAS-3 system (see www.cs.vu.nl/das3/) will consist of six
clusters located at five different universities and research institutes, with each clus-
ter being connected by a dedicated and fully optical wide-area connection. No-
tably, each cluster will also contain a variety of many-core “add-ons” (including
a.o. GPUs and FPGAs), making DAS-4 a highly diverse and heterogeneous system.
The shear number of similar developments currently taking place the world over
indicates that many-cores are rapidly becoming an irrefutable additional component
of high-performance and distributed systems.

With clusters, grids, and clouds thus being equipped with multi-core processors
and many-core “add-ons,” systems available to scientists are becoming increasingly
hard to program and use. Despite the fact that the programming and efficient use
of many-cores is known to be hard [31, 32], this is not the only—or most severe—
problem. With the increasing heterogeneity of the underlying hardware, the efficient
mapping of computational problems onto the “bare metal” has become vastly more
complex. Now more than ever, programmers must be aware of the potential for
parallelism at all levels of granularity.

But the problem is even more severe. Given the ever increasing desire for
speed and scalability in many scientific research domains, the use of a single high-
performance computing platform is often not sufficient. The need to access multiple
platforms concurrently from within a single application often is due to the impossi-
bility of reserving a sufficient number of compute nodes at once in a single multiuser

http://www.cs.vu.nl/das3/

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 171

Fig. 8.1 Left: A “worst-case” Jungle Computing System as perceived by scientific end-users, si-
multaneously comprising any number of clusters, grids, clouds, and other computing platforms.
Right: Hierarchical view of a Jungle Computing System

system. Moreover, additional issues such as the distributed nature of the input data,
the heterogeneity of the software pipeline being applied, and the ad hoc availability
of the required computing resources, further indicate a need for computing across
multiple, and potentially very diverse, platforms. For all of these reasons, in this
chapter we make the following claim:

Many research scientists (now and in the near future) are being forced to apply multiple
clusters, grids, clouds, and other systems concurrently—even for executing single applica-
tions.

We refer to such a simultaneous combination of heterogeneous, hierarchical, and
distributed computing resources as a Jungle Computing System (see Fig. 8.1).

The abovementioned claim is not new. As part of the European Grid Initiative
(EGI [55]), for example, it has been stressed that the integrated application of clus-
ters, grids, and clouds in scientific computing is a key component of the research
agenda for the coming years [9]. Similarly, Microsoft Research has advocated the
integrated use of grids and clouds [16]. Further European research efforts in this
direction are taking place in COST Action IC0805 (ComplexHPC: Open European
Network for High-Performance Computing in Complex Environments [56]).

Compared to these related visionary ideas, the notion of a Jungle Computing
System is more all-encompassing. It exposes all computing problems that scientists
today can be (and often are) confronted with. Even though we do not expect most (or
even any) research scientists to have to deal with the “worst-case” scenario depicted
in Fig. 8.1, we do claim that—in principle—any possible subset of this figure rep-
resents a realistic scenario. Hence, if we can define the fundamental methodologies
required to solve the problems encountered in the worst-case scenario, we ensure
that our solution applies to all possible scenarios.

8.3 Jungle Computing: Requirements and Methodologies

Although Jungle Computing Systems and grids are not identical (i.e., the latter be-
ing constituent components of the former), a generic answer to our overall research

172 F.J. Seinstra et al.

question introduced in Sect. 8.1 is given by the “founding fathers of the grid.”
In [18], Foster et al. indicate that one of the main aims of grid computing is to
deliver transparent and potentially efficient computing, even at a worldwide scale.
This aim extends to Jungle Computing as well.

It is well known that adhering to the general requirements of transparency and
efficiency is a hard problem. Although rewarding approaches exist for specific ap-
plication types (i.e., work-flow driven problems [29, 47] and parameter sweeps [1]),
solutions for more general applications types (e.g., involving irregular communica-
tion patterns) do not exist today. This is unfortunate, as advances in optical network-
ing allow for a much larger class of distributed (Jungle Computing) applications to
run efficiently [53].

We ascribe this rather limited use of grids and other distributed systems—or the
lack of efficient and transparent programming models—to the intrinsic complexities
of distributed (Jungle) computing systems. Programmers often are required to use
low-level programming interfaces that change frequently. Also, they must deal with
system- and software heterogeneity, connectivity problems, and resource failures.
Furthermore, managing a running application is hard, because the execution envi-
ronment may change dynamically as resources come and go. All these problems
limit the acceptance of the many distributed computing technologies available to-
day.

In our research we aim to overcome these problems and to drastically simplify the
programming and deployment of distributed supercomputing applications—without
limiting the set of target hardware platforms. Importantly, our philosophy is that Jun-
gle Computing applications should be developed on a local workstation and simply
be launched from there. This philosophy directly leads to a number of fundamental
requirements underlying the notion of Jungle Computing. In the following we will
give a high-level overview of these requirements and indicate how these require-
ments are met with in our Ibis distributed programming system.

8.3.1 Requirements

The abovementioned general requirements of transparency and efficiency are un-
equal quantities. The requirement of transparency decides whether an end-user is
capable of using a Jungle Computing System at all, while the requirement of effi-
ciency decides whether the use is sufficiently satisfactory. In the following we will
therefore focus mainly on the transparency requirements. We will simply assume
that, once the requirement of transparency is fulfilled, efficiency is a derived prop-
erty that can be obtained a.o. by introducing “intelligent” optimization techniques,
application domain-specific knowledge, etc.

In our view, for full transparency, the end-user must be shielded from all issues
that complicate the programming and use of Jungle Computing Systems in compar-
ison with the programming and use of a desktop computer. To this end, methodolo-
gies must be available that provide transparent support for:

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 173

• Resource independence. In large-scale Jungle Computing Systems heterogeneity
is omnipresent, to the effect that applications designed for one system are gen-
erally guaranteed to fail on others. This problem must be removed by hiding the
physical characteristics of resources from end-users.

• Middleware independence and interoperability. As many resources already have
at least one middleware installed, Jungle Computing applications must be able
to use (or: interface with) such local middlewares. To avoid end-users having to
implement a different interface for each local middleware (and to enhance porta-
bility), it is essential to have available a single high-level interface on top of all
common middleware systems. As multiple distributed resources may use differ-
ent middlewares, some form of interoperability between these middlewares must
be ensured as well.

• Robust connectivity and globally unique resource naming. Getting distributed ap-
plications to execute at all in a Jungle Computing System is difficult. This is
because firewalls, transparent renaming of IP addresses, and multihoming (ma-
chines with multiple addresses) can severely complicate or limit the ability of
resources to communicate. Moreover, in many cases no direct connection with
certain machines is allowed at all. Despite solutions that have been provided for
firewall issues (e.g., NetIbis [10], Remus [46]), integrated solutions must be made
available that remove connectivity problems altogether. At the same time, and in
contrast to popular communication libraries such as MPI, each resource must be
given a globally unique identifier.

• Malleability. In a Jungle Computing System, the set of available resources may
change, e.g., because of reservations ending. Jungle Computing software must
support malleability, correctly handling resources joining and leaving.

• System-level fault-tolerance. Given the many independent parts of a large-scale
Jungle Computing System, the chance of resource failures is high. Jungle Com-
puting software must be able to handle such failures in a graceful manner. Fail-
ures should not hinder the functioning of the entire system, and failing resources
should be detected and, if needed (and possible), replaced.

• Application-level fault-tolerance. The capacity of detecting resource failures, and
replacing failed resources, is essential functionality for any realistic Jungle Com-
puting System. However, this functionality in itself cannot guarantee the correct
continuation of running applications. Hence, restoring the state of applications
that had been running on a failed resource is a further essential requirement. Such
functionality is generally to be implemented either in the application itself or in
the runtime system of the programming model with which an application is im-
plemented. Support for application-level fault-tolerance in the lower levels of the
software stack can be limited to failure detection and reporting.

• Parallelization. For execution on any Jungle Computing system, it is generally
up to the programmer to identify the available parallelism in a problem at hand.
For the programmer—generally a domain expert with limited or no expertise in
distributed supercomputing—this is often an insurmountable problem. Clearly,
programming models must be made available that hide most (if not all) of the
inherent complexities of parallelization.

174 F.J. Seinstra et al.

• Integration with external software. It is unrealistic to assume that a single all-
encompassing software system would adhere to all needs of all projected users.
In many scientific research domains there is a desire for integrating “black box”
legacy codes, while the expertise or resources to rewrite such codes into a newly
required format or language are lacking. Similarly, it is essential to be able to
integrate system-level software (e.g., specialized communication libraries) and
architecture-specific compute kernels (e.g., CUDA-implemented algorithms for
GPU-execution). While such “linking up” with existing and external software
partially undermines our “write-and-go” philosophy, this property is essential for
a software system for Jungle Computing to be of any use to general scientific
researchers.

Our list of requirements is by no means complete; it merely consists of a minimal
set of methodologies that—in combination—fulfill our high-level requirement of
transparency. Further requirements certainly also exist, including support for co-
allocation, security, large-scale distributed data management, noncentralized con-
trol, runtime adaptivity, the handling of quality-of-service (QoS) constraints, and
runtime monitoring and visualization of application behavior. These are secondary
requirements, however, and are not discussed further in this chapter.

8.4 Ibis

The Ibis platform (see also www.cs.vu.nl/ibis/) aims to combine all of the stated fun-
damental methodologies into a single integrated programming system that applies
to any Jungle Computing System (see Fig. 8.2). Our open-source software system
provides high-level, architecture- and middleware-independent interfaces that allow
for (transparent) implementation of efficient applications that are robust to faults
and dynamic variations in the availability of resources. To this end, Ibis consists
of a rich software stack that provides all functionality that is traditionally associ-
ated with programming languages and communication libraries on the one hand
and operating systems on the other. More specifically, Ibis offers an integrated, lay-
ered solution, consisting of two subsystems: the High-Performance Programming
System and the Distributed Deployment System.

8.4.1 The Ibis High-Performance Programming System

The Ibis High-Performance Programming System consists of (1) the IPL, (2) the
programming models, and (3) SmartSockets, described below.

(1) The Ibis Portability Layer (IPL): The IPL is at the heart of the Ibis High-
Performance Programming System. It is a communication library which is written
entirely in Java, so it runs on any platform that provides a suitable Java Virtual
Machine (JVM). The library is typically shipped with an application (as Java jar

http://www.cs.vu.nl/ibis/

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 175

Fig. 8.2 Integration of the
required methodologies in the
Ibis software system. See also
http://www.cs.vu.nl/ibis/

files) such that no preinstalled libraries need to be present at any destination ma-
chine. The IPL provides a range of communication primitives (partially comparable
to those provided by libraries such as MPI), including point-to-point and multicast
communication, and streaming. It applies efficient protocols that avoid copying and
other overheads as much as possible, and uses bytecode rewriting optimizations for
efficient transmission.

To deal with real-world Jungle Computing Systems, in which resources can crash
and can be added or deleted, the IPL incorporates a globally unique resource naming
scheme and a runtime mechanism that keeps track of the available resources. The
mechanism, called Join-Elect-Leave (JEL [13]), is based on the concept of signal-
ing, i.e., notifying the application when resources have Joined or Left the compu-
tation. JEL also includes Elections, to select resources with a special role. The IPL
contains a centralized implementation of JEL, which is sufficient for static (closed-
world) programming models (like MPI), and a more scalable distributed implemen-
tation based on gossiping.

The IPL has been implemented on top of the socket interface provided by the
JVM and on top of our own SmartSockets library (see below). Irrespective of the
implementation, the IPL can be used “out of the box” on any system that provides a
suitable JVM. In addition, the IPL can exploit specialized native libraries, such as a
Myrinet device driver (MX) if it exists on the target system. Further implementations
of the IPL exist, on top of MPI, and on the Android smart phone platform.

(2) Ibis Programming Models: The IPL can be (and has been) used directly to
write applications, but Ibis also provides several higher-level programming models
on top of the IPL, including (1) an implementation of the MPJ standard, i.e., an
MPI version in Java, (2) Satin, a divide-and-conquer model, described below, (3)
Remote Method Invocation (RMI), an object-oriented form of Remote Procedure
Call, (4) Group Method Invocation (GMI), a generalization of RMI to group com-

http://www.cs.vu.nl/ibis/

176 F.J. Seinstra et al.

munication, (5) Maestro, a fault-tolerant and self-optimizing data-flow model, and
(6) Jorus, a user transparent parallel programming model for multimedia applica-
tions discussed in Sect. 8.6.

Arguably, the most transparent model of these is Satin [60], a divide-and-conquer
system that automatically provides fault-tolerance and malleability. Satin recur-
sively splits a program into subtasks and then waits until the subtasks have been
completed. At runtime a Satin application can adapt the number of nodes to the
degree of parallelism, migrate a computation away from overloaded resources, re-
move resources with slow communication links, and add new resources to replace
resources that have crashed. As such, Satin is one of the few systems that provides
transparent programming capabilities in dynamic systems.

(3) SmartSockets: To run a parallel application on multiple distributed resources,
it is necessary to establish network connections. In practice, however, a variety of
connectivity problems exists that make communication difficult or even impossi-
ble, such as firewalls, Network Address Translation (NAT), and multihoming. It is
generally up to the application user to solve such connectivity problems manually.

The SmartSockets library aims to solve connectivity problems automatically,
with little or no help from the user. SmartSockets integrates existing and novel solu-
tions, including reverse connection setup, STUN, TCP splicing, and SSH tunneling.
SmartSockets creates an overlay network by using a set of interconnected support
processes, called hubs. Typically, hubs are run on the front-end of a cluster. Using
gossiping techniques, the hubs automatically discover to which other hubs they can
establish a connection. The power of this approach was demonstrated in a worldwide
experiment: in 30 realistic scenarios SmartSockets always was capable of establish-
ing a connection, while traditional sockets only worked in six of these [30].

Figure 8.3 shows an example using three cluster systems. Cluster A is open and
allows all connections. Cluster B uses a firewall that only allows outgoing connec-
tions. In cluster C only the front-end machine is reachable. No direct communication
is possible between the nodes and the outside world. By starting a hub on each of
the front-end machines and providing the location of the hub on cluster A to each of
them, the hubs will automatically connect as shown in Fig. 8.3. The arrows between

Fig. 8.3 Example connection setup with SmartSockets

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 177

the hubs depict the direction in which the connection can be established. Once a
connection is made, it can be used in both directions.

The nodes of the clusters can now use the hubs as an overlay network when no
direct communication is possible. For example, when a node of cluster B tries to
connect to a node of cluster A, a direct connection can immediately be created.
A connection from A to B, however, cannot be established directly. In this case,
SmartSockets will use the overlay network to exchange control messages between
the nodes to reverse the direction of connection setup. As a result, the desired (direct)
connection between the nodes of A and B can still be created. The nodes of cluster
C are completely unreachable from the other clusters. In this case SmartSockets will
create a virtual connection, which routes messages over the overlay network.

The basic use of SmartSockets requires manual initialization of the network of
hubs. This task, however, is performed automatically and transparently by IbisDe-
ploy, our top-level deployment system, described in the next section.

8.4.2 The Ibis Distributed Deployment System

The Ibis Distributed Application Deployment System consists of a software stack
for deploying and monitoring applications, once they have been written. The soft-
ware stack consists of (1) the JavaGAT, (2) IbisDeploy, and (3) Zorilla.

(1) The Java Grid Application Toolkit (JavaGAT): Today, distributed system
programmers generally have to implement their applications against a grid mid-
dleware API that changes frequently, is low-level, unstable, and incomplete [33].
The JavaGAT solves these problems in an integrated manner. JavaGAT offers high-
level primitives for developing and running applications, independent of the mid-
dleware that implements this functionality [51]. The primitives include access to
remote data, start remote jobs, support for monitoring, steering, user authentication,
resource management, and storing of application-specific data. The JavaGAT uses
an extensible architecture, where adaptors (plugins) provide access to the different
middlewares.

The JavaGAT integrates multiple middleware systems with different and incom-
plete functionality into a single, consistent system, using a technique called intel-
ligent dispatching. This technique dynamically forwards application calls on the
JavaGAT API to one or more middleware adaptors that implement the requested
functionality. The selection process is done at runtime and uses policies and heuris-
tics to automatically select the best available middleware, enhancing portability. If
an operation fails, the intelligent dispatching feature will automatically select and
dispatch the API call to an alternative middleware. This process continues until a
middleware successfully performs the requested operation. Although this flexibility
comes at the cost of some runtime overhead, compared to the cost of the operations
themselves, this is often negligible. For instance, a Globus job submission takes
several seconds, while the overhead introduced by the JavaGAT is less than 10 mil-
liseconds. The additional semantics of the high-level API, however, can introduce

178 F.J. Seinstra et al.

some overhead. If a file is copied, for example, the JavaGAT first checks if the desti-
nation already exists or is a directory. These extra checks may be costly because they
require remote operations. Irrespective of these overheads, JavaGAT is essential to
support our “write-and-go” philosophy: it allows programmers to ignore low-level
systems peculiarities and to focus on solving domain-specific problems instead.

The JavaGAT does not provide a new user/key management infrastructure. In-
stead, its security interface provides generic functionality to store and manage se-
curity information such as usernames and passwords. Also, the JavaGAT provides a
mechanism to restrict the availability of security information to certain middleware
systems or remote machines. Currently, JavaGAT supports many different middle-
ware systems, such as Globus, Unicore, gLite, PBS, SGE, KOALA, SSH, GridSAM,
EC2, ProActive, GridFTP, HTTP, SMB/CIFS, and Zorilla.

(2) IbisDeploy: Even though JavaGAT is a major step forward to simplifying ap-
plication deployment, its API still requires the programmer to think in terms of mid-
dleware operations. Therefore, the Ibis Distributed Deployment System provides a
simplified and generic API, implemented on top of the JavaGAT, and an additional
GUI, the IbisDeploy system.

The IbisDeploy API is a thin layer on top of the JavaGAT API that initializes
JavaGAT in the most commonly used ways and that lifts combinations of multiple
JavaGAT calls to a higher abstraction level. For example, if one wants to run a dis-
tributed application written in Ibis, a network of SmartSockets hubs must be started
manually. IbisDeploy takes over this task in a fully transparent manner. Also, to run
(part of) an Ibis application on a remote machine, one of the necessary steps is to
manually upload the actual program code and related libraries to that machine. Ibis-
Deploy transparently deals with such prestaging (and poststaging) actions as well.

The IbisDeploy GUI (see Fig. 8.4) allows a user to manually load resources and
applications at any time. As such, multiple Jungle Computing applications can be
started using the same graphical interface. The IbisDeploy GUI also allows the user
to add new resources to a running application (by providing contact information
such as host address and user credentials), and to pause and resume applications.
All runtime settings can be saved and reused in later experiments.

(3) Zorilla: Most existing middleware APIs lack coscheduling capabilities and
do not support fault tolerance and malleability. To overcome these problems, Ibis
provides Zorilla, a lightweight peer-to-peer middleware that runs on any Jungle
Computing System. In contrast to traditional middleware, Zorilla has no central
components and is easy to set up and maintain. Zorilla supports fault tolerance
and malleability by implementing all functionality using peer-to-peer techniques.
If resources used by an application are removed or fail, Zorilla is capable of au-
tomatically finding replacement resources. Zorilla is specifically designed to easily
combine resources in multiple administrative domains.

A Zorilla system is made up of a collection of nodes running on all resources,
connected by a peer-to-peer network (see Fig. 8.5). Each node in the system is com-
pletely independent and implements all functionality required for a middleware,
including the handling of the submission of jobs, running jobs, storing of files, etc.
Each Zorilla node has a number of local resources. This may simply be the machine

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 179

Fig. 8.4 The IbisDeploy GUI that enables runtime loading of applications and resources (top
middle) and keeping track of running processes (bottom half). Top left shows a world map of
the locations of available resources; top right shows the SmartSockets network of hubs. See also
http://www.cs.vu.nl/ibis/demos.html

Fig. 8.5 Example Zorilla peer-to-peer resource-pool on top of a Jungle Computing System con-
sisting of two clusters, a desktop grid, a laptop, and cloud resources (e.g., acquired via Amazon
EC2). On the clusters, a Zorilla node is run on the headnode, and Zorilla interacts with the local
resources via the local scheduler. On the desktop grid and the cloud, a Zorilla node is running on
each resource, since no local middleware capable of scheduling jobs is present on these systems

it is running on, consisting of one or more processor cores, memory, and data stor-
age. Alternatively, a node may provide access to other resources, for instance, to all
machines in a cluster. Using the peer-to-peer network, all Zorilla nodes tie together
into one big distributed system. Collectively, nodes implement the required global

http://www.cs.vu.nl/ibis/demos.html

180 F.J. Seinstra et al.

functionality such as resource discovery, scheduling, and distributed data storage,
all using peer-to-peer techniques.

To create a resource pool, a Zorilla daemon process must be started on each
participating machine. Also, each machine must be given the address of at least one
other machine, to set up a connection. Jobs can be submitted to Zorilla using the
JavaGAT or, alternatively, using a command line interface. Zorilla then allocates the
requested number of resources and schedules the application, taking user-defined
requirements (like memory size) into account. The combination of virtualization
and peer-to-peer techniques thus makes it very easy to deploy applications with
Zorilla.

8.4.3 Ibis User Community

Ibis has been used to run a variety of real-life applications like multimedia com-
puting (see Sect. 8.6), spectroscopic data processing (by the Dutch Institute for
Atomic and Molecular Physics), human brain scan analysis (with the Vrije Uni-
versiteit Medical Center), automatic grammar learning, and many others. Also, Ibis
has been applied successfully in an implementation of the industry-strength SAT4J
SAT-solver. In addition, Ibis has been used by external institutes to build high-level
programming systems, such as a workflow engine for astronomy applications in D-
grid (Max-Planck-Institute for Astrophysics) and a grid file system (University of
Erlangen–Nürnberg), or to enhance existing systems, such as KOALA (Delft Uni-
versity of Technology), ProActive (INRIA), Jylab (University of Patras), and Grid
Superscalar (Barcelona Supercomputer Center). Moreover, Ibis has won prizes in in-
ternational competitions, such as the International Scalable Computing Challenge at
CCGrid 2008 and 2010 (for scalability), the International Data Analysis Challenge
for Finding Supernovae at IEEE Cluster/Grid 2008 (for speed and fault-tolerance),
and the Billion Triples Challenge at the 2008 International Semantic Web Confer-
ence (for general innovation).

8.4.4 Ibis versus the Requirements of Jungle Computing

From the general overview of the Ibis platform it should be clear that our software
system adheres to most (if not all) of the requirements of Jungle Computing intro-
duced in Sect. 8.3. Resource independence is obtained by relying on JVM virtualiza-
tion, while the JavaGAT provides us with middleware independence and interoper-
ability. Robust connectivity and globally unique resource naming is taken care of by
the SmartSockets library and the Ibis Portability Layer (IPL), respectively. The need
for malleability and system-level fault-tolerance is supported by the resource track-
ing mechanisms of the Join-Elect-Leave (JEL) model, which is an integral part of
the Ibis Portability Layer. Application-level fault-tolerance can be built on top of the

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 181

system-level fault-tolerance mechanisms provided by the IPL. For a number of pro-
gramming models, in particular Satin, we have indeed done so in a fully transparent
manner. The need for transparent parallelization is also fulfilled through a number of
programming models implemented on top of the IPL. Using the Satin model, paral-
lelization is obtained automatically for divide-and-conquer applications. Similarly,
using the Jorus model, data parallel multimedia computing applications can be im-
plemented in a fully user transparent manner. Finally, integration with legacy codes
and system-level software is achieved through JNI (Java Native Interface) link ups,
in the case of system level software through so-called adaptor interfaces (plugins).
We will further highlight the linking up with many-core specific compute kernels
implemented using CUDA in Sect. 8.6.

8.5 The Need for Jungle Computing in Scientific Practice

As stated in Sect. 8.1, the scientific community has automated many daily activities,
in particular to speed up the generation of results and to scale up to problem sizes
that better match the research questions at hand. Whether it be in the initial process
of data collection or in later stages including data filtering, analysis, and storage, the
desire for speed and scalability can occur in any phase of the scientific process.

In this section we describe a number of urgent and realistic problems occurring in
four representative science domains: Multimedia Content Analysis, Semantic Web,
Neuroinformatics, and Remote Sensing. Each description focuses on the societal
significance of the domain, the fundamental research questions, and the unavoidable
need for applying Jungle Computing Systems.

8.5.1 Multimedia Content Analysis

Multimedia Content Analysis (MMCA) considers all aspects of the automated ex-
traction of knowledge from multimedia data sets [7, 45]. MMCA applications (both
real-time and offline) are rapidly gaining importance along with recent deployment
of publicly accessible digital TV archives and surveillance cameras in public lo-
cations. In a few years, MMCA will be a problem of phenomenal proportions, as
digital video may produce high data rates, and multimedia archives steadily run into
Petabytes of storage. For example, the analysis of the TRECVID data set [42], con-
sisting of 184 hours of video, was estimated to take over 10 years on a fast sequential
computer. While enormous in itself, this is insignificant compared to the 700,000
hours of TV data archived by the Dutch Institute for Sound and Vision. Moreover,
distributed sets of surveillance cameras generate even larger quantities of data.

Clearly, for emerging MMCA problems, there is an urgent need for speed and
scalability. Importantly, there is overwhelming evidence that large-scale distributed
supercomputing indeed can push forward the state-of-the-art in MMCA. For exam-
ple, in [42] we have shown that a distributed system involving hundreds of mas-
sively communicating resources covering the entire globe indeed can bring efficient

182 F.J. Seinstra et al.

Fig. 8.6 Real-time (left) and offline (right) distributed multimedia computing. The real-time ap-
plication constitutes a visual object recognition task, in which video frames obtained from a robot
camera are processed on a set of compute clusters. Based on the calculated scene descriptions, a
database of learned objects is searched. Upon recognition the robot reacts accordingly. For this sys-
tem, we obtained a “most visionary research award” at AAAI 2007. A video presentation is avail-
able at http://www.cs.vu.nl/~fjseins/aibo.html. The offline application constitutes our TRECVID
system, in which low-level semantic concepts (e.g., “sky”, “road”, “greenery”) are extracted and
combined into high-level semantic concepts (e.g., “cars driving on a highway”), using the same set
of compute clusters. For this system, we obtained a “best technical demo award” at ACM Multi-
media 2005

solutions for real-time and offline problems (see Fig. 8.6). Notably, our Ibis-based
solution to the real-time problem of Fig. 8.6 has won First Prize in the International
Scalable Computing Challenge at CCGrid in 2008.

8.5.2 Semantic Web

The Semantic Web [23, 49] is a groundbreaking development of the World Wide
Web in which the semantics of information is defined. Through these semantics
machines can “understand” the Web, allowing querying and reasoning over Web in-
formation gathered from different sources. The Semantic Web is based on specifica-
tions that provide formal descriptions of concepts, terms, and relationships within a
given knowledge domain. Examples include annotated medical datasets containing.
e.g., gene sequence information (linkedlifedata.com) and structured information de-
rived from Wikipedia (dbpedia.org).

Even though the Semantic Web domain is still in its infancy, it already faces
problems of staggering proportions [17]. Today, the field is dealing with huge dis-
tributed repositories containing billions of facts and relations (see also Fig. 8.7)—
with an expected exponential growth in the years to come. As current Semantic Web
reasoning systems do not scale to the requirements of emerging applications, it has
been acknowledged that there is an urgent need for a distributed platform for mas-
sive reasoning that will remove the speed and scalability barriers [17]. Notably, our
preliminary work in this direction has resulted in prize-winning contributions to the
Billion Triples Challenge at the International Semantic Web Conference in 2008 [2]
and the International Scalable Computing Challenge at CCGrid in 2010 [48].

http://www.cs.vu.nl/~fjseins/aibo.html

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 183

Fig. 8.7 Visualization of relationships between concepts and terms extracted through automatic
reasoning. As the full dataset is far too large, this example visualization focuses on one term only.
This is a feat in itself, as the filtering out of such data from the full dataset is a complex search
problem. Notably, our prize-winning reasoner is 60 times faster and deals with 10 times more data
than any existing approach

8.5.3 Neuroinformatics

Neuroinformatics encompasses the analysis of experimental neuroscience data for
improving existing theories of brain function and nervous system growth. It is well
known that activity dynamics in neuronal networks depend largely on the pattern
of synaptic connections between neurons [12]. It is not well understood, however,
how neuronal morphology and the local processes of neurite outgrowth and synapse
formation influence global connectivity. To investigate these issues, there is a need
for simulations that can generate large neuronal networks with realistic neuronal
morphologies.

Due to the high computational complexity, existing frameworks (such as NET-
MORPH [27]) can simulate networks of up to a few hundred neurons only (Fig. 8.8,
left). With the human brain having an estimated 100 billion neurons, a vast scaling
up of the simulations is urgent. While the neuroinformatics domain is not new to the
use of supercomputer systems (e.g., the Blue Brain Project [21]), speed and scale
requirements—as well as algorithmic properties—dictate distributed supercomput-
ing at an unprecedented scale. Our preliminary investigation of the NETMORPH
system has shown significant similarities with a specific subset of N -body problems
that require adaptive runtime employment of compute resources. We have ample

184 F.J. Seinstra et al.

Fig. 8.8 Left: NETMORPH-generated network, with cell bodies, axons, dendrites and synaptic
connections embedded in 3D space. Right: AVIRIS hyperspectral image data, with location of
fires in World Trade Center

experience with such problems [41, 60], which require many of the advanced capa-
bilities of the Ibis system.

8.5.4 Remote Sensing

Remotely sensed hyperspectral imaging is a technique that generates hundreds of
images corresponding to different wavelengths channels for the same area on the
surface of the Earth [20]. For example, NASA is continuously gathering image data
with satellites such as the Jet Propulsion Laboratory’s Airborne Visible-Infrared
Imaging Spectrometer (AVIRIS [22]). The resulting hyperspectral data cubes con-
sist of high-dimensional pixel vectors representing spectral signatures that uniquely
characterize the underlying objects [8]. Processing of these cubes is highly desired
in many application domains, including environmental modeling and risk/hazard
prediction (Fig. 8.8, right).

With emerging instruments generating in the order of 1 Gbit/s (e.g., ESA’s
FLEX [39]), data sets applied in real applications easily approach the petascale
range. Given the huge computational demands, parallel and distributed solutions
are essential, at all levels of granularity. As a result, in the last decade the use of
compute clusters for applications in remote sensing has become commonplace [38].
These approaches are proven beneficial for a diversity of problems, including target
detection and classification [35], and automatic spectral unmixing and endmember
extraction [37]. Depending on the complexity and dimensionality of the analyzed
scene, however, the computational demands of many remote sensing methodologies
still limit their use in time-critical applications. For this reason, there is an emerging
trend in mapping remote sensing functionality onto multi- and many-core hardware
and in combining the resulting compute kernels with existing solutions for clusters
and distributed systems [36].

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 185

8.5.5 A Generalized View

The science domains described above are not unique in their needs for speed and
scalability. These domains are simply the ones for which we have gained experience
over the years. Certainly, and as clearly shown in [3], the list of domains that we
could have included here is virtually endless.

Importantly, however, the set of described domains covers a wide range of appli-
cation types, with some being time-constrained and compute-intensive, and others
being offline and data-intensive. Also, for all of these domains, Jungle Computing
solutions already exist today (at least to a certain extent)—with each using a variety
of distributed computing systems (even at a worldwide scale), and some includ-
ing the use of many-core hardware. As shown in Sect. 8.6, some of these solutions
are implemented purely in Ibis, while others constitute a “mixed-language” solu-
tion with legacy codes and specialized compute kernels being integrated with Ibis
software. As stated, many of these Ibis-implemented solutions have won prizes and
awards at international venues, each for a different reason: speed, scalability, fault-
tolerance, and general innovation. With our ultimate goal of developing transparent
and efficient tools for scientific domain experts in mind, it is relevant to note that
several of these results have been obtained with little or no help from the Ibis team.

This brings us to the reasons for the unavoidable need for using Jungle Com-
puting Systems in these and other domains, as claimed in this chapter. While these
reasons are manyfold, we will only state the most fundamental ones here. First, in
many cases research scientists need to acquire a number of compute nodes that can-
not be provided by a single system alone—either because the problem at hand is too
big, or because other applications are being run on part of the available hardware. In
these cases, concurrently acquiring nodes on multiple systems often is the only route
to success. In other cases, calculations need to be performed on distributed data sets
that cannot be moved—either because of size limitations, or due to reasons of pri-
vacy, copyright, security, etc. In these cases, it is essential to (transparently) move
the calculations to where the data is, instead of vice versa. Furthermore, because
many scientists have to rely on legacy codes or compute kernels for special-purpose
hardware, parts of the processing pipeline may only run on a limited set of available
machines. In case the number of such specialized codes becomes large, acquiring
resources from many different resources simply is unavoidable.

It is important to realize that the use of a variety of distributed resources (certainly
at a worldwide scale) is not an active desire or end-goal of any domain expert. For all
of the above (and other) reasons, research scientists today are simply being forced
into using Jungle Computing Systems. It is up to the field of high-performance and
distributed computing to understand the fundamental research questions underlying
this problem, to develop the fundamental methodologies solving each of these re-
search questions, and to combine these methodologies into efficient and transparent
programming models and tools for end-users.

186 F.J. Seinstra et al.

8.6 Jungle Computing Experiments

In this section we describe a number of experiments that illustrate the functionality
and performance of the Ibis system. We focus on the domain of Multimedia Content
Analysis, introduced in Sect. 8.5.1. Our discussion starts with a description of an
Ibis-implemented programming model, called Jorus, which is specifically targeted
toward researchers in the MMCA domain [42].

For the bulk of the experiments, we use the Distributed ASCI Supercomputer 3
(DAS-3, www.cs.vu.nl/das3), a five cluster/272-dual node distributed system lo-
cated at four universities in The Netherlands. The clusters are largely homogeneous,
but there are differences in the number of cores per machine, the clock frequency,
and the internal network. In addition, we use a small GPU-cluster, called Lisa, lo-
cated at SARA (Stichting Academisch Rekencentrum Amsterdam). Although the
traditional part of the Lisa cluster is much larger, the system currently has a total of
six Quad-core Intel Xeon 2.50 GHz nodes available, each of which is equipped with
two Nvidia Tesla M1060 graphics adaptors with 240 cores and 4 GBytes of device
memory. Next to DAS-3 and Lisa, we use additional clusters in Chicago (USA),
Chiba and Tsukuba (InTrigger, Japan), and Sydney (Australia), an Amazon EC2
Cloud system (USA, East Region), as well as a desktop grid and a single stand-
alone machine (both Amsterdam, The Netherlands). Together, this set of machines
constitutes a real-world Jungle Computing System as defined earlier. Most of the ex-
periments described below are supported by a video presentation, which is available
at http://www.cs.vu.nl/ibis/demos.html.

8.6.1 High-Performance Distributed Multimedia Analysis with
Jorus

The Jorus programming system is an Ibis-implemented user transparent paralleliza-
tion tool for the MMCA domain. Jorus is the next generation implementation of our
library-based Parallel-Horus system [42], which was implemented in C++ and MPI.
Jorus and Parallel-Horus allow programmers to implement data parallel multime-
dia applications as fully sequential programs. Apart from the obvious differences
between the Java and C++ languages, the Jorus and Parallel-Horus APIs are identi-
cal to that of a popular sequential programming system, called Horus [26]. Similar
to other frameworks [34], Horus recognizes that a small set of algorithmic patterns
can be identified that covers the bulk of all commonly applied multimedia comput-
ing functionality.

Jorus and Parallel-Horus include patterns for functionality such as unary and bi-
nary pixel operations, global reduction, neighborhood operation, generalized convo-
lution, and geometric transformations (e.g., rotation, scaling). Recent developments
include patterns for operations on large datasets and patterns on increasingly im-
portant derived data structures, such as feature vectors. For reasons of efficiency,
all Jorus and Parallel-Horus operations are capable of adapting to the performance

http://www.cs.vu.nl/das3
http://www.cs.vu.nl/ibis/demos.html

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 187

characteristics of the cluster computer at hand, i.e., by being flexible in the partition-
ing of data structures. Moreover, it was realized that it is not sufficient to consider
parallelization of library operations in isolation. Therefore, the programming sys-
tems incorporate a runtime approach for communication minimization (called lazy
parallelization) that automatically parallelizes a fully sequential program at runtime
by inserting communication primitives and additional memory management opera-
tions whenever necessary [43].

Earlier results obtained with Parallel-Horus for realistic multimedia applications
have shown the feasibility of the applied approach, with data parallel performance
consistently being found to be optimal with respect to the abstraction level of mes-
sage passing programs [42]. Notably, Parallel-Horus was applied in earlier NIST
TRECVID benchmark evaluations for content-based video retrieval and played a
crucial role in achieving top-ranking results in a field of strong international com-
petitors [42, 45]. Moreover, and as shown in our evaluation below, extensions to
Jorus and Parallel-Horus that allow for services-based distributed multimedia com-
puting have been applied successfully in large-scale distributed systems, involv-
ing hundreds of massively communicating compute resources covering the entire
globe [42]. Finally, while the current Jorus implementation realizes data parallel ex-
ecution on cluster systems in a fully user transparent manner, we are also working
on a cluster implementation that results in combined data and task parallel execu-
tion [50].

8.6.2 Experiment 1: Fine-Grained Parallel Computing

To start our evaluation of Ibis for Jungle Computing, we first focus on Ibis com-
munication on a single traditional cluster system. To be of any significance for Jun-
gle Computing applications, it is essential for Ibis’ communication performance to
compare well to that of the MPI message passing library—the de facto standard for
high-performance cluster computing applications. Therefore, in this first experiment
we will focus on fine-grained data-parallel image and video analysis, implemented
using our Jorus programming model. For comparison, we also report results ob-
tained for Parallel-Horus (in C++/MPI) [42].

In particular, we investigate the data-parallel analysis of a single video frame in a
typical MMCA application (as also shown in the left half of Fig. 8.6). The applica-
tion implements an advanced object recognition algorithm developed in the Dutch
MultimediaN project [42]. At runtime, so-called feature vectors are extracted from
the video data, each describing local properties like color and shape. The analysis
of a single video frame is a data-parallel task executed on a cluster. When using
multiple clusters, data-parallel calculations over consecutive frames are executed
concurrently in a task-parallel manner.

The Jorus implementation intentionally mimics the original Parallel-Horus ver-
sion as close as possible. Hence, Jorus implements several collective communica-
tion operations, such as scatter, gather, and all-reduce. Other application specific

188 F.J. Seinstra et al.

communication steps, such as the exchange of nonlocal image data between nodes
(known as BorderExchange) are implemented in a manner resembling point-to-point
communication. More importantly, the Ibis runtime environment has been set up for
closed-world execution, meaning that the number of compute nodes is fixed for the
duration of the application run. This approach voids all of Ibis’ fault-tolerance and
malleability capabilities, but it shows that Ibis can be used easily to mimic any MPI-
style application.

By default, Ibis uses TCP for communication, but the user can indicate which
communication protocol to use. In our experiments the MX (Myrinet Express) pro-
tocol is available for the DAS-3 Myri-10G high-speed interconnects. In the follow-
ing we will therefore report results for four different versions of the multimedia
application using a single physical network: two versions in Java/Ibis (one commu-
nicating over MX and one over TCP) and two versions in C++/MPI (again, one for
each protocol). Of these four versions, the C++/MPI/MX version is expected to be
the fastest, as C++ is perceived to be generally faster than Java and MX is designed
specifically for communication over Myri-10G.

Figure 8.9(a) presents the results for the DAS-3 cluster at the Vrije Universiteit,
obtained for a video frame of size 1024 × 768 pixels. The sequential Java version is
about 20% slower than the sequential C++ version. This performance drop is well
within acceptable limits for a “compile-once, run everywhere” application executing
inside a virtual machine. Also, MX does not significantly outperform TCP. Clearly,
the communication patterns applied in our application do not specifically favor MX.
More importantly, the two Ibis versions are equally fast and show similar speedup
characteristics compared to their MPI-based counterparts.

Further evidence of the feasibility of Ibis for parallel computing is shown in
Fig. 8.9(b). The graph on the left shows the normalized speed of three versions
of the application compared to the fastest C++/MPI/MX version. It shows that the
relative drop in performance is rather stable at 20 to 25%, which is attributed to JVM
overhead. The graph on the right presents the cost of communication relative to the
overall execution time. Clearly, the relative parallelization overheads of Ibis and
MPI are almost identical. These are important results, given the increased flexibility
and much wider applicability of the Ibis system.

8.6.3 Experiment 2: User Transparent MMCA on GPU-Clusters

Essentially, Jorus extends the original sequential Horus library by introducing a thin
layer right in the heart of the small set of algorithmic patterns, as shown in Fig. 8.10.
This layer uses the IPL to communicate image data and other structures among the
different nodes in a cluster. In the most common case, a digital image is scattered
throughout the parallel system, so that each compute node is left with a partial
image. Apart from the need for additional pre- and post-communication steps (such
as the common case of border handling in convolution operations), the sequential
compute kernels as also available in the original Horus system are now applied to
each partial image.

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 189

Fig. 8.9 Results obtained on DAS-3 cluster at Vrije Universiteit, Amsterdam

From a software engineering perspective, the fact that the IPL extensions “touch”
the sequential implementation of the algorithmic patterns in such a minimal way
provides Jorus with the important properties of sustainability and easy extensibility.
In the process of extending Jorus for GPU-based execution, we have obtained a sim-
ilar minimal level of intrusiveness: we left the thin communication layer as it is and
introduced CUDA-based alternatives to the sequential compute kernels that imple-

Fig. 8.10 General overview
of the Jorus system and its
CUDA-based extensions

190 F.J. Seinstra et al.

Fig. 8.11 (a) Runtimes in seconds for different configurations in the number of CPUs and GPUs;
(b) User-perceived speedup compared to single CPU execution. Results obtained on Lisa cluster,
SARA, Amsterdam

ment the algorithmic patterns (see bottom half of Fig. 8.10). In this manner, Jorus
and CUDA are able to work in concert, allowing the use of multiple GPUs on the
same node and on multiple nodes simultaneously, simply by creating one Jorus pro-
cess for each GPU. In other words, with this approach, we obtain a system that can
execute sequential Jorus applications in data parallel fashion, while exploiting the
power of GPU hardware. The details of the CUDA-implemented compute kernels
are beyond the scope of this chapter and are discussed further in [52].

Our second experiment comprises the computationally demanding problem of
line detection in images and video streams [19]. Although not identical to our ob-
ject recognition problem discussed above, the set of algorithmic patterns applied
in the Jorus implementation is quite similar. We have executed this GPU-enabled
application on the Lisa cluster. In our experiments we use many different configura-
tions, each of which is denoted differently by the number of nodes and CPUs/GPUs
used. For example, measurements involving one compute node and one Jorus pro-
cess are denoted by 1 × 1. Likewise, 4 × 2 means that 4 nodes are used with 2 Jorus
processes executing on each node. For the CUDA-based executions, the latter case
implies the concurrent use of 8 GPUs.

Figure 8.11(a) shows the total runtimes for several configurations using either
CPUs or GPUs for the execution of the original and CUDA-implemented compute
kernels. The presented execution times include the inherently sequential part of the
application, which consists mainly of reading and writing the input and output im-
ages. For CPU-only execution, the execution time reduces linearly; using 8 CPUs
gives a speedup of 7.9. These results are entirely in line with earlier speedup char-
acteristics reported in [44] for much larger cluster systems.

The GPU-extensions to the Jorus system show a dramatic performance improve-
ment in comparison with the original version. Even in the 1 × 1 case, the total
execution time is reduced by a factor of 61.2. The speedup gained from executing
on a GPU cluster, compared to a traditional cluster, clearly demonstrates why tra-
ditional clusters are now being extended with GPUs as accelerators. As shown in

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 191

Fig. 8.11(b), our application executing on 4 nodes with 2 Jorus processes per node,
experiences a speedup of 387 with GPU-extensions. Notably, when using the Jorus
programming model, these speedup results are obtained without requiring any par-
allelization effort from the application programmer.

8.6.4 Experiment 3: Jungle Computing at a World-Wide Scale

After having discussed some the capabilities and performance characteristics of the
Ibis system for traditional cluster systems and emerging GPU-clusters, we will now
turn our attention to the use of Ibis for worldwide execution on a large variety of
computing resources. For this purpose, we reconsider our object recognition prob-
lem of Sect. 8.6.2.

As stated, when using multiple distributed resources, with Jorus it is possible
to concurrently perform multiple data-parallel calculations over consecutive video
frames in a task-parallel manner. This is achieved by wrapping the data parallel
analysis in a multimedia server implementation. At runtime, client applications can
then upload an image or video frame to such a server and receive back a recognition
result. In case multiple servers are available, a client can use these simultaneously
for subsequent image frames, in effect resulting in task-parallel employment of data-
parallel services.

As shown in our demonstration video (see www.cs.vu.nl/ibis/demos.html), we
use IbisDeploy to start a client and an associated database of learned objects on a
local machine and to deploy four data-parallel multimedia servers, each on a differ-
ent DAS-3 cluster (using 64 machines in total). All code is implemented in Java and
Ibis, and compiled on the local machine. No application codes are initially installed
on any other machine.

Our distributed application shows the simultaneous use of multiple Ibis environ-
ments. Whilst the data-parallel execution runs in a closed-world setting, the dis-
tributed extensions are set up for open-world execution to allow resources to be
added and removed at runtime. For this application, the additional use of resources
indeed is beneficial: where the use of a single multimedia server results in a client-
side processing rate of approximately 1.2 frames per second, the simultaneous use
of 2 and 4 clusters leads to linear speedups at the client side with 2.5 and 5 frames/s,
respectively.

We continue the experiment by employing several additional clusters, an Amazon
EC2 cloud, a local desktop grid, and a local standalone machine. With this world-
wide set of machines, we now use a variety of middlewares simultaneously (i.e.,
Globus, Zorilla, and SSH) from within a single application. Although not included
in the demonstration, at a lower video resolution the maximum obtained frame-rate
is limited only by the speed of the camera, meaning that (soft) real-time multimedia
computing at a worldwide scale has become a reality.

When running at this worldwide scale, a variety of connectivity problems is au-
tomatically circumvented by SmartSockets. As almost all of the applied resources

http://www.cs.vu.nl/ibis/demos.html

192 F.J. Seinstra et al.

Fig. 8.12 Visualization of resources used in a worldwide Jungle Computing experiment, showing
all nodes and the SmartSockets overlay network between these. Nodes marked Z represent Zorilla
nodes running on either a frontend machine or on a resource itself. Nodes marked I represent
instances of a running (Ibis) application

have more than one IP address, SmartSockets automatically selects the appropri-
ate address. Also, SmartSockets automatically creates SSH tunnels to connect with
the clusters in Japan and Australia. These systems would be unreachable otherwise.
Finally, the SmartSockets network of hubs avoids further problems due to firewalls
and NATs. In case we would remove the hub network, we only would have access to
those machines that allow direct connections to and from our client application. As
our client is behind a firewall, two-way connectivity is possible only within the same
administrative domain, which includes the local desktop grid, the standalone ma-
chine, and one of the DAS-3 clusters. Clearly, the absence of SmartSockets would
by-and-large reduce our worldwide distributed system to a small set of local ma-
chines. A visualization of a SmartSockets overlay network is shown in Fig. 8.12.

To illustrate Ibis’ fault-tolerance mechanisms, the video also shows an experi-
ment where an entire multimedia server crashes. The Ibis resource tracking system
notices the crash, and signals this event to other parts of the application. After some
time, the client is notified, to the effect that the crashed server is removed from the
list of available servers. The application continues to run, as the client keeps on
forwarding video frames to all remaining servers.

The demonstration also shows the use of the multimedia servers from a smart-
phone running the Android operating system. For this platform, we have written a
separate Ibis-based client, which can upload pictures taken with the phone’s cam-
era and receive back a recognition result. Running the full application on the smart-
phone itself is not possible due to CPU and memory limitations. Based on a stripped

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 193

down, yet very inaccurate, version that does run on the smartphone, we estimate that
recognition for 1024 × 768 images would take well over 20 minutes. In contrast,
when the smartphone uploads a picture to one of the multimedia servers, it obtains
a result in about 3 seconds. This result clearly shows the potential of Ibis to open up
the field of mobile computing for compute-intensive applications. Using IbisDeploy,
it is even possible to deploy the entire distributed application as described from the
smartphone itself.

8.7 Conclusions and Future Work

In this chapter we have argued that, while the need for speed and scalability in
everyday scientific practice is omnipresent and increasing, the resources employed
by end-users are often more diverse than those contained in a single cluster, grid, or
cloud system. In many realistic scientific research areas, domain experts are being
forced into concurrent use of multiple clusters, grids, clouds, desktop grids, stand-
alone machines, and more. Writing applications for such Jungle Computing Systems
has become increasingly difficult, in particular with the integration of many-core
hardware technologies.

The aim of the Ibis platform is to drastically simplify the programming and de-
ployment of Jungle Computing applications. To achieve this, Ibis integrates solu-
tions to many of the fundamental problems of Jungle Computing in a single modular
programming and deployment system, written entirely in Java. Ibis has been used
for many real-world Jungle Computing applications and has won awards and prizes
in very diverse international competitions.

Despite the successes, and the fact that—to our knowledge—Ibis is the only inte-
grated system that offers an efficient and transparent solution for Jungle Computing,
further progress is urgent for Ibis to become a viable programming system for every-
day scientific practice. One of the foremost questions to be dealt with is whether it is
possible to define a set of fundamental building blocks that can describe any Jungle
Computing application. Such building blocks can be used to express both generic
programming models (e.g., pipelining, divide-and-conquer, MapReduce, SPMD),
and domain-specific models (e.g., the Jorus model described earlier). A further ques-
tion is whether all of these models indeed can yield efficient execution on various
Jungle Computing Systems. In relation to this is the question whether it is possi-
ble to define generic computational patterns that can be reused to express a variety
of domain-specific programming models. The availability of such generic patterns
would significantly enhance the development of new programming models for un-
explored scientific domains.

As we have shown in Sect. 8.6.3, multiple kernels with identical functionality but
targeted at different platforms (referred to as equi-kernels) often are available. Such
kernels are all useful, e.g., due to different scalability characteristics or ad hoc hard-
ware availability. Therefore, an important question is how to transparently integrate
(multiple) domain-specific kernels with Jungle Computing programming models
and applications. Moreover, how do we transparently decide to schedule a specific

194 F.J. Seinstra et al.

kernel when multiple equi-kernels can be executed on various resources? Initially,
it would be sufficient to apply random or heuristic-based approaches. For improved
performance, however, further solutions must be investigated, including those that
take into account the potential benefits of coalescing multiple subsequent kernels,
and scheduling these as a single kernel.

Mapping kernels to resources is a dynamic problem. This is because resources
may be added or removed, and the computational requirements of kernels may fluc-
tuate over time. Moreover, the mapping may have to take into account optimization
under multiple, possibly conflicting, objectives (e.g., speed, productivity, financial
costs, energy use). Hence, a further research question is to what extent it is possible
to provide runtime support for transparent and dynamic remapping and migration of
compute kernels in Jungle Computing Systems. Also, what basic metrics do we need
for making self-optimization decisions, and how can we apply these using existing
theories of multiobjective optimization?

Despite the need for solutions to all of these (and other) fundamental research
questions, the Ibis system was shown to adhere to most (if not all) of the necessary
requirements of Jungle Computing introduced in Sect. 8.3. As a result, we conclude
that Jungle Computing is not merely a visionary concept; with Ibis, we already de-
ploy Jungle Computing applications on a worldwide scale virtually every day. Any-
one can do the same: the Ibis platform is fully open source and can be downloaded
for free from http://www.cs.vu.nl/ibis.

References

1. Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: a tool for performing parameterised sim-
ulations using distributed workstations. In: Proceedings of the 4th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC’95), Pentagon City, USA, pp. 112–
121 (1995)

2. Anadiotis, G., Kotoulas, S., Oren, E., Siebes, R., van Harmelen, F., Drost, N., Kemp, R.,
Maassen, J., Seinstra, F., Bal, H.: MaRVIN: a distributed platform for massive RDF inference.
In: Semantic Web Challenge 2008, Held in Conjunction with the 7th International Semantic
Web Conference (ISWC 2008), Karlsruhe, Germany (2008)

3. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N.,
Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing
landscape. Commun. ACM 52(10), 56–67 (2009)

4. Bal, H., Maassen, J., van Nieuwpoort, R., Drost, N., Kemp, R., van Kessel, T., Palmer, N.,
Wrzesińska, G., Kielmann, T., van Reeuwijk, K., Seinstra, F., Jacobs, C., Verstoep, K.: Real-
world distributed computing with ibis. IEEE Comput. 48(8), 54–62 (2010)

5. Butler, D.: The petaflop challenge. Nature 448, 6–7 (2007)
6. Carley, K.: Organizational change and the digital economy: a computational organization sci-

ence perspective. In: Brynjolfsson, E., Kahin, B. (eds.) Understanding the Digital Economy:
Data, Tools, Research, pp. 325–351. MIT Press, Cambridge (2000)

7. Carneiro, G., Chan, A., Moreno, P., Vasconcelos, N.: Supervised learning of semantic classes
for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 394–410
(2007)

8. Chang, C.I.: Hyperspectral Data Exploitation: Theory and Applications. Wiley, New York
(2007)

http://www.cs.vu.nl/ibis

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 195

9. Kranzlmüller, D.: Towards a sustainable federated grid infrastructure for science. In: Keynote
Talk, Sixth High-Performance Grid Computing Workshop (HPGC’08), Rome, Italy (2009)

10. Denis, A., Aumage, O., Hofman, R., Verstoep, K., Kielmann, T., Bal, H.: Wide-area commu-
nication for grids: an integrated solution to connectivity, performance and security problems.
In: Proceedings of the 13th International Symposium on High Performance Distributed Com-
puting (HPDC’04), Honolulu, HI, USA, pp. 97–106 (2004)

11. Dijkstra, E.: On the Phenomenon of Scientific Disciplines (1986). Unpublished Manuscript
EWD988; E.W. Dijkstra Archive

12. Douglas, R., Martin, K.: Neuronal circuits in the neocortex. Annu. Rev. Neurosci. 27, 419–451
(2004)

13. Drost, N., van Nieuwpoort, R., Maassen, J., Seinstra, F., Bal, H.: JEL: unified resource tracking
for parallel and distributed applications. Concurr. Comput. Pract. Exp. (2010). doi:10.1002/
cpe.1592

14. Editorial: The importance of technological advances. Nature Cell Biology 2, E37 (2000)
15. Editorial: Cloud computing: clash of the clouds. The Economist (2009)
16. Gagliardi, F.: Grid and cloud computing: opportunities and challenges for e-science. In:

Keynote Speech, International Symposium on Grid Computing 2008 (ISCG 2008), Taipei,
Taiwan (2008)

17. Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Valle, E.D., Fis-
cher, F., Zhisheng, H., Kiryakov, A., Lee, T.I., Schooler, L., Tresp, V., Wesner, S., Witbrock,
M., Ning, Z.: Towards LarKC: a platform for web-scale reasoning. In: Proceedings of the Sec-
ond International Conference on Semantic Computing (ICSC 2008), Santa Clara, CA, USA,
pp. 524–529 (2008)

18. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual orga-
nizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)

19. Geusebroek, J., Smeulders, A., Geerts, H.: A minimum cost approach for segmenting networks
of lines. Int. J. Comput. Vis. 43(2), 99–111 (2001)

20. Goetz, A., Vane, G., Solomon, J., Rock, B.: Imaging spectrometry for earth remote sensing.
Science 228, 1147–1153 (1985)

21. Graham-Rowe, D.: Mission to Build a Simulated Brain Begins. New Scientist (2005)
22. Green, R., Eastwood, M., Sarture, C., Chrien, T., Aronsson, M., Chippendale, B., Faust,

J., Pavri, B., Chovit, C., Solis, M., Olah, M.: Imaging spectroscopy and the airborne visi-
ble/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65(3), 227–248 (1998)

23. Hendler, J., Shadbolt, N., Hall, W., Berners-Lee, T., Weitzner, D.: Web science: an interdisci-
plinary approach to understanding the web. Commun. ACM 51(7), 60–69 (2008)

24. Hey, T.: The social grid. In: Keynote Talk, OGF20 2007, Manchester, UK (2007)
25. Khan, J., Wierzbicki, A.: Guest editor’s introduction; foundation of peer-to-peer computing.

Comput. Commun. 31(2), 187–189 (2008)
26. Koelma, D., Poll, E., Seinstra, F.: Horus C++ reference. Tech. rep., University of Amsterdam,

The Netherlands (2002)
27. Koene, R., Tijms, B., van Hees, P., Postma, F., de Ridder, A., Ramakers, G., van Pelt, J.,

van Ooyen, A.: NETMORPH: a framework for the stochastic generation of large scale neu-
ronal networks with realistic neuron morphologies. Neuroinformatics 7(3), 195–210 (2009)

28. Lu, P., Oki, H., Frey, C., Chamitoff, G., Chiao, L., Fincke C.M. Foale, E.M. Jr., Tani, D.,
Whitson, P., Williams, J., Meyer, W., Sicker, R., Au, B., Christiansen, M., Schofield, A., Weitz,
D.: Order-of-magnitude performance increases in gpu-accelerated correlation of images from
the international space station. J. Real-Time Image Process. (2009)

29. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E., Tao, J.,
Zhao, Y.: Scientific workflow management and the Kepler system. Concurr. Comput. Pract.
Exp. 18(10), 1039–1065 (2005)

30. Maassen, J., Bal, H.: SmartSockets: solving the connectivity problems in grid computing. In:
Proceedings of the 16th International Symposium on High Performance Distributed Comput-
ing (HPDC’07), Monterey, USA, pp. 1–10 (2007)

31. Manual: Advanced Micro Devices Corporation (AMD). AMD Stream Computing User Guide,
Revision 1.1 (2008)

http://dx.doi.org/10.1002/cpe.1592
http://dx.doi.org/10.1002/cpe.1592

196 F.J. Seinstra et al.

32. Manual: NVIDIA CUDA Complete Unified Device Architecture Programming Guide, v2.0
(2008)

33. Medeiros, R., Cirne, W., Brasileiro, F., Sauvé, J.: Faults in grids: why are they so bad and what
can be done about it? In: Proceedings of the 4th International Workshop on Grid Computing,
Phoenix, AZ, USA, pp. 18–24 (2003)

34. Morrow, P., Crookes, D., Brown, J., McAleese, G., Roantree, D., Spence, I.: Efficient imple-
mentation of a portable parallel programming model for image processing. Concurr. Comput.
Pract. Exp. 11, 671–685 (1999)

35. Paz, A., Plaza, A., Plaza, J.: Comparative analysis of different implementations of a parallel
algorithm for automatic target detection and classification of hyperspectral images. In: Pro-
ceedings of SPIE Optics and Photonics—Satellite Data Compression, Communication, and
Processing V, San Diego, CA, USA (2009)

36. Plaza, A.: Recent developments and future directions in parallel processing of remotely sensed
hyperspectral images. In: Proceedings of the 6th International Symposium on Image and Sig-
nal Processing and Analysis, Salzburg, Austria, pp. 626–631 (2009)

37. Plaza, A., Plaza, J., Paz, A.: Parallel heterogeneous CBIR system for efficient hyperspectral
image retrieval using spectral mixture analysis. Concurr. Comput. Pract. Exp. 22(9), 1138–
1159 (2010)

38. Plaza, A., Valencia, D., Plaza, J., Martinez, P.: Commodity cluster-based parallel processing
of hyperspectral imagery. J. Parallel Distrib. Comput. 66(3), 345–358 (2006)

39. Rasher, U., Gioli, B., Miglietta, F.: FLEX—fluorescence explorer: a remote sensing approach
to quantify spatio-temporal variations of photosynthetic efficiency from space. In: Allen, J., et
al. (eds.) Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis,
pp. 1387–1390. Springer, Berlin (2008)

40. Reilly, M.: When multicore isn’t enough: trends and the future for multi-multicore systems.
In: Proceedings of the Twelfth Annual Workshop on High-Performance Embedded Computing
(HPEC 2008), Lexington, MA, USA (2008)

41. Seinstra, F., Bal, H., Spoelder, H.: Parallel simulation of ion recombination in nonpolar liquids.
Future Gener. Comput. Syst. 13(4–5), 261–268 (1998)

42. Seinstra, F., Geusebroek, J., Koelma, D., Snoek, C., Worring, M., Smeulders, A.: High-
performance distributed video content analysis with parallel-horus. IEEE Trans. Multimed.
14(4), 64–75 (2007)

43. Seinstra, F., Koelma, D., Bagdanov, A.: Finite state machine-based optimization of data par-
allel regular domain problems applied in low-level image processing. IEEE Trans. Parallel
Distrib. Syst. 15(10), 865–877 (2004)

44. Seinstra, F., Koelma, D., Geusebroek, J.: A software architecture for user transparent parallel
image processing. Parallel Comput. 28(7–8), 967–993 (2002)

45. Snoek, C., Worring, M., Geusebroek, J., Koelma, D., Seinstra, F., Smeulders, A.: The semantic
pathfinder: using an authoring metaphor for generic multimedia indexing. IEEE Trans. Pattern
Anal. Mach. Intell. 28(10), 1678–1689 (2006)

46. Tan, J., Abramson, D., Enticott, C.: Bridging organizational network boundaries on the grid.
In: Proceedings of the 6th IEEE International Workshop on Grid Computing, Seattle, WA,
USA, pp. 327–332 (2005)

47. Taylor, I., Wang, I., Shields, M., Majithia, S.: Distributed computing with Triana on the grid.
Concurr. Comput. Pract. Exp. 17(9), 1197–1214 (2005)

48. Urbani, J., Kotoulas, S., Maassen, J., Drost, N., Seinstra, F., van Harmelen, F., Bal, H.:
WebPIE: a web-scale parallel inference engine. In: Third IEEE International Scalable Com-
puting Challenge (SCALE2010), Held in Conjunction with the 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2010), Melbourne, Australia
(2010)

49. van Harmelen, F.: Semantic web technologies as the foundation of the information infrastruc-
ture. In: van Oosterom, P., Zlatanove, S. (eds.) Creating Spatial Information Infrastructures:
Towards the Spatial Semantic Web. CRC Press, London (2008)

8 Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds 197

50. van Kessel, T., Drost, N., Seinstra, F.: User transparent task parallel multimedia content anal-
ysis. In: Proceedings of the 16th International Euro-Par Conference (Euro-Par 2010), Ischia–
Naples, Italy (2010)

51. van Nieuwpoort, R., Kielmann, T., Bal, H.: User-friendly and reliable grid computing based
on imperfect middleware. In: Proceedings of the ACM/IEEE International Conference on Su-
percomputing (SC’07), Reno, NV, USA (2007)

52. van Werkhoven, B., Maassen, J., Seinstra, F.: Towards user transparent parallel multimedia
computing on GPU-clusters. In: Proceedings of the 37th ACM IEEE International Symposium
on Computer Architecture (ISCA 2010), First Workshop on Applications for Multi and Many
Core Processors (A4MMC 2010), Saint Malo, France (2010)

53. Verstoep, K., Maassen, J., Bal, H., Romein, J.: Experiences with fine-grained distributed su-
percomputing on a 10G testbed. In: Proceedings of the 8th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’08), Lyon, France, pp. 376–383 (2008)

54. Waltz, D., Buchanan, B.: Automating science. Science 324, 43–44 (2009)
55. Website: EGI—Towards a Sustainable Production Grid Infrastructure. http://www.eu-egi.eu
56. Website: Open European Network for High-Performance Computing on Complex Environ-

ments. http://w3.cost.esf.org/index.php?id=177&action_number=IC0805
57. Website: SETI@home. http://setiathome.ssl.berkeley.edu
58. Website: Top500 Supercomputer Sites. http://www.top500.org; Latest Update (2009)
59. Wojick, D., Warnick, W., Carroll, B., Crowe, J.: The digital road to scientific knowledge dif-

fusion: a faster, better way to scientific progress? D-Lib Mag. 12(6) (2006)
60. Wrzesińska, G., Maassen, J., Bal, H.: Self-adaptive applications on the grid. In: Proceedings

of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’07), San Jose, CA, USA, pp. 121–129 (2007)

http://www.eu-egi.eu
http://w3.cost.esf.org/index.php?id=177&action_number=IC0805
http://setiathome.ssl.berkeley.edu
http://www.top500.org

Chapter 9
Application-Level Interoperability Across Grids
and Clouds

Shantenu Jha, Andre Luckow, Andre Merzky,
Miklos Erdely, and Saurabh Sehgal

Abstract Application-level interoperability is defined as the ability of an applica-
tion to utilize multiple distributed heterogeneous resources. Such interoperability is
becoming increasingly important with increasing volumes of data, multiple sources
of data as well as resource types. The primary aim of this chapter is to understand
different ways in which application-level interoperability can be provided across
distributed infrastructure. We achieve this by (i) using the canonical wordcount ap-
plication, based on an enhanced version of MapReduce that scales-out across clus-
ters, clouds, and HPC resources, (ii) establishing how SAGA enables the execution
of wordcount application using MapReduce and other programming models such
as Sphere concurrently, and (iii) demonstrating the scale-out of ensemble-based
biomolecular simulations across multiple resources. We show user-level control of
the relative placement of compute and data and also provide simple performance
measures and analysis of SAGA–MapReduce when using multiple, different, het-
erogeneous infrastructures concurrently for the same problem instance. Finally, we
discuss Azure and some of the system-level abstractions that it provides and show
how it is used to support ensemble-based biomolecular simulations.

S. Jha (�) · A. Luckow · A. Merzky · S. Sehgal
Louisiana State University, Baton Rouge, 70803, USA
e-mail: sjha@cct.lsu.edu

A. Luckow
e-mail: aluckow@cct.lsu.edu

A. Merzky
e-mail: andre@merzky.net

M. Erdely
University of Pannonia, Veszprem, Hungary
e-mail: erdelyim@gmail.com

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6_9, © Springer-Verlag London Limited 2011

199

mailto:sjha@cct.lsu.edu
mailto:aluckow@cct.lsu.edu
mailto:andre@merzky.net
mailto:erdelyim@gmail.com
http://dx.doi.org/10.1007/978-0-85729-049-6_9

200 S. Jha et al.

9.1 Introduction

There are numerous scientific applications that either currently utilize or need to uti-
lize data and resources distributed over vast heterogeneous infrastructures and net-
works with varying speeds and characteristics. Many distributed frameworks are,
however, designed with infrastructures; dependence and tight-coupling to specific
resource types and technology, in a heterogeneous distributed environment, is not
an optimal design choice. In order to leverage the flexibility of distributed systems
and to gain maximum runtime performance, applications must shed their depen-
dence on single infrastructure for all of their computational and data processing
needs. For example, the Sector/Sphere data cloud is exclusively designed to support
data-intensive computing on high-speed networks, while other distributed file sys-
tems like GFS/HDFS assume limited bandwidth among infrastructure nodes [11,
20]. Thus, for applications to efficiently utilize heterogeneous environments, ab-
stractions must be developed for the efficient utilization of and orchestration across
such distinct distributed infrastructure.

In addition to issues of performance and scale addressed in the previous para-
graph, the transition of existing distributed programming models and applications
to emerging and novel distributed infrastructure must be as seamless and as nondis-
ruptive as possible. A fundamental question at the heart of all these considerations
is the question of how scientific applications can be developed so as to utilize as
broad a range of distributed systems as possible, without vendor lock-in, yet with
the flexibility and performance that scientific applications demand.

We define Application Level Interoperability (ALI) as a feature that arises, when
other than say compiling, there are no further changes required of the application to
utilize a new platform. If service-level interoperability can be considered as weak
interoperability, ALI can be considered to be strong interoperability. The complex-
ity of providing ALI varies and depends upon the application under consideration.
For example, it is somewhat easier for simple “distribution-unaware” applications to
utilize multiple heterogeneous distributed environments than for applications where
multiple distinct and possibly distributed components need to coordinate and com-
municate.

The Case for Application-Level Interoperability ALI is not only of theoreti-
cal interest. There exist many applications which involve large volumes of data on
distributed heterogeneous resources. For example, the Earth-Science Grid involves
peta- to exa-bytes of data, and one thus cannot move all data (given current transfer
capabilities), nor compute at a centralized location. Thus there is an imperative to
operate on the data in situ, which in turn involves computation across heterogeneous
distributed platforms as part of the same application.

In addition, there exist a wide range of applications that have decomposable but
heterogeneous computational tasks. It is conceivable that some of these tasks are
better suited for traditional grids, whilst some are better placed in cloud environ-
ments. The LEAD application, as part of the VGrADS project provides a prominent

9 Application-Level Interoperability Across Grids and Clouds 201

example.1 Due to different data-compute affinity requirement amongst the tasks,
some workers might be better placed on a cloud [1], whilst some may optimally
be located on regular grids. Complex dependencies and interrelationships between
subtasks make this often difficult to determine before runtime.

Last, but not least, in the rapidly evolving world of clouds, there is as of yet little
business motivation for cloud providers to define, implement, and support new/stan-
dard interfaces. Consequently, there is a case to be made that by providing ALI, such
barriers can be overcome, and cross-cloud applications can be easily achieved.

Ideally, an application can utilize any PM, and any PM should be executable on
any underlying infrastructure. However, an application maybe better suited to a spe-
cific PM; similarly, a specific PM maybe optimized for a specific infrastructure. But
where this is not necessarily the case, or more importantly, where/when different
application or PM can utilize “nonnative” infrastructure, mix and match across the
layers of application, PM and infrastructure should be supported. Currently, many
programming models and abstractions are tied to a specific back-end infrastruc-
ture. For example, Google’s MapReduce, which is tied to Google’s file system, or
Sphere [21], which is linked to the Sector file system. Thus there is a need to inves-
tigate interoperability of different programming models for the same application on
different systems.

In our effort to understand these issues, to establish and investigate ALI, we
will work with MapReduce and an application based on MapReduce, the canon-
ical wordcount application. We use SAGA, “Simple API for Grid Applications”
(see Sect. 9.2), as the programming system. In Ref. [30], for example, we im-
plemented a simple MapReduce-based wordcount application using SAGA. We
demonstrated that the SAGA-based implementation is infrastructure independent,
whilst still providing control over deployment, distribution, and runtime decom-
position. We demonstrated that SAGA–MapReduce is interoperable on traditional
(grids) and emerging (clouds) distributed infrastructure concurrently and coopera-
tively toward a solution of the same problem instance. Our approach was to use the
same instance of the wordcounting problem, by using different worker distributions
over clouds and grid systems.

A primary focus of this chapter is to build upon and use SAGA-based MapRe-
duce as an exemplar to discuss multiple levels and types of interoperability that
can exist between grids and clouds. We will also show that our approach to ALI
helps break the coupling between programming models and infrastructure on the
one hand, whilst providing empirically driven insight about the performance of an
application with different programming models.

This chapter is structured as follows: Sect. 9.2 gives a short overview over those
SAGA extensions which enable specifically the ALI work discussed in this paper.
Sect. 9.3 describes our SAGA–MapReduce implementation. Section 9.4 discusses
the different levels of ALI we are demonstrating in this paper, with more details on
the experiments in Sect. 9.5. We change the focus to a more traditional compute-
intensive applications in Sect. 9.6; although very commonly used and needed, it

1http://vgrads.rice.edu/presentations/VGrADS_overview_SC08pdf.pdf

http://vgrads.rice.edu/presentations/VGrADS_overview_SC08pdf.pdf

202 S. Jha et al.

still remains a challenge to effectively utilize multiple resources for the effective so-
lution of ensemble-based simulations. This provides the motivation for our work in
Sect. 9.6. In Sect. 9.7, we discuss Azure in the context of ensemble-based biomolec-
ular simulations. Section 9.8 concludes the chapter with a discussion of the results.

9.2 SAGA

The SAGA [23, 32] programming system provides a high-level API that forms a
simple, standard, and uniform interface for the most commonly required distributed
functionality. SAGA can be used to program distributed applications [2, 3] or tool-
kits to manage distributed applications [27], as well as implement abstractions that
support commonly occurring programming, access, and usage patterns.

Figure 9.1 provides an overview of the SAGA programming system’s architec-
ture. The SAGA API covers job submission, file access and transfer, and logical file
management. Additionally there is support for Checkpoint and Recovery (CPR),
Service Discovery (SD), and other areas. The API is implemented in C++ and Java,
with Python supported as a wrapper. saga_core is the main library, which provides
dynamic support for runtime environment decision making through loading rele-
vant adaptors. We will not discuss SAGA internals here; details can be found else-
where [4, 23].

Fig. 9.1 The SAGA runtime engine dynamically dispatches high-level API calls to a variety of
middlewares

9 Application-Level Interoperability Across Grids and Clouds 203

9.2.1 Interfacing SAGA to Grids and Clouds

SAGA was originally developed primarily for compute-intensive grids. Ref. [30]
demonstrated that in spite of its original design constraints, SAGA can be used to
develop data-intensive applications in diverse distributed environments, including
clouds. This is in part due to the fact that, at least on application level, much of
the “distributed functionality” required for data-intensive applications remains the
same. How the respective functionality for grid systems and for EC2-based cloud
environments is provided in SAGA is also documented in [30]. Based on those
experiences, we added another backend to the set, which allows one to extend the
range of backend architectures available to SAGA-C++ to Sector–Sphere [21].

Sector–Sphere Adaptors: Design and Implementation

Sector and Sphere is a cloud framework specifically designed for writing appli-
cations able to utilize the stream processing paradigm. Sector is a distributed file
system that manages data across physical compute nodes at the file level and pro-
vides the infrastructure to manipulate data in the cloud. Sphere, on the other hand,
provides the framework to utilize the stream processing paradigm for processing
the data residing on Sector. The Sphere system is composed of Sphere Processing
Engines (SPEs) running on the same physical nodes as the Sector file system.

Applications that utilize the stream processing paradigm define a single com-
mon function (aka kernel) that is applied to segments of a given data set. When the
application invokes Sphere to process data on Sector, the Sphere system retrieves
the stream of data, segments the data, and assigns chunks of these segments to the
available SPEs for processing.

Sphere allows the user to encode the kernel function in a dynamically linked
library written against the Sphere APIs. The SPEs apply this user-defined function
to its assigned segments and write the processing results back to files in Sector. This
stream of output files can be retrieved by the user from Sector after the processing
is complete.

SAGA Adaptor Overhead We execute a simple experiment to measure the over-
head introduced by submitting Sphere jobs and Sector file operations through
SAGA. The used sample Sphere kernel function accepts a buffer of text and uti-
lizes the Sphere framework to hash words into Sphere buckets, using the first letter
as the key. One gigabyte of text data was uploaded to the Sector file system for this
test. Furthermore, traces were implemented in the adaptors to measure the exact
time spent in SAGA processing and translation before the raw Sphere APIs were
called. As seen in Table 9.1, the SAGA overhead is, if compared to the overall exe-
cution time of the application, negligible. This makes SAGA an excellent platform
to compare Sphere with other distinct programming models.

204 S. Jha et al.

Table 9.1 Adaptor overhead measurements from processing 8 GBs of data with 8 SPEs running
the wordcount application on 8 physical nodes on Poseidon (a LONI cluster). All times are in
minutes, aggregated from 10 runs

Vanilla Sphere SAGA–Sphere Adaptor overhead

Mean 3.2 4.1 0.43

Stdev 0.5 1.2 0.07

Thanks to the low overhead of developing SAGA adaptors, we were able to im-
plement the Sector file adaptor and the Sphere job adaptor for applications to uti-
lize the stream processing paradigm through SAGA. The enhancement of SAGA–
MapReduce, along with the implementation of the Sector/Sphere adaptors naturally
gives us the opportunity to compare and study these two distinct programming mod-
els.

9.3 SAGA-Based MapReduce

Given its relevance [30], we choose the SAGA–MapReduce implementation to com-
pare both, different backend systems (grids, clouds, and clusters) and different pro-
gramming models (master/slave, Sector–Sphere streams). A simple wordcount ap-
plication on top of SAGA–MapReduce has been used as a close-to-reality test case
and is described in Sect. 9.5.

9.3.1 SAGA–MapReduce Implementation

Our implementation of SAGA–MapReduce interleaves the core MapReduce logic
with explicit instructions on where processes are to be scheduled. The advantage of
this approach is that our implementation is no longer bound to run on a system pro-
viding the appropriate semantics originally required by MapReduce and is portable
to a broader range of generic systems as well. The drawback is that it is more com-
plicated to extract performance, as some system level semantics has to be recreated
in application space (i.e., on SAGA or SAGA–MapReduce) level. The fact that the
implementation is single threaded proved to be the primary current performance in-
hibitor. However, none of these complexities are exposed to the end-user, as they
remain hidden within the framework.

SAGA–MapReduce exposes a simple interface which provides the complete
functionality needed by any MapReduce algorithm, while hiding the more com-
plex functionality, such as chunking of the input, sorting the intermediate results,
launching and coordinating the workers, etc.—these are generically implemented
by the framework. The application consists of two independent processes, a master
and worker processes. The master process is responsible for:

9 Application-Level Interoperability Across Grids and Clouds 205

• launching all workers for the map and reduce steps, as described in a configura-
tion file provided by the user; and

• coordinating the workers, chunking of the data, assigning the input data to the
workers of the map step, handling the intermediate data files produced by the
map step, passing the location of the sorted output files to the workers of the
reduce step.

When launching a job, the master is the executable run by the client itself, which
means that the resource from which the client program is run determines from where
the master will be available. A MapReduce job is specified by a JobDescription
object in which the user sets the Mapper and Reducer classes, input and output
paths and formats. The used InputFormat creates the logical partitions of the input
data for the master which information is then sent to idle workers. A RawRecord-
Reader implementation is responsible for interpreting an InputChunk and providing
a record iterator for the Mapper. It is possible to support any kind of data source for
which a record-oriented view makes sense by writing a custom RawRecordReader.
The output from the Mapper is further processed by the Partitioner which assigns
emitted key/value pairs from the Mapper to reducers. Finally, a RawRecordWriter
writes output data to files. Custom RawRecordWriter and Partitioner classes can be
also implemented to suit the application’s needs.

The master process is readily available to the user and needs no modification for
different map and reduce functions to execute. The worker processes get assigned
work either from the map or the reduce step. The functionality for the different
steps have to be provided by the user, which means that the user has to write two
C++ functions implementing the respective MapReduce kernels.

Both the master and the worker processes use the SAGA-API as an abstract in-
terface to the used infrastructure, making the application portable between different
architectures and systems. The worker processes are launched using the SAGA job
package, allowing the jobs to launch either locally, on Globus/GRAM backends,
on EC2 instances, through SSH or on a Condor pool. The communication between
the master and workers is ensured by using the SAGA advert package, abstract-
ing an information database in a platform-independent way, and the SAGA stream
package, abstracting streaming data access between network endpoints. The master
creates logical partitions of the data (referred to as chunking, analogous to Google’s
MapReduce), so the data-set does not have to be split and distributed manually. The
input data can be located on any file system supported by SAGA, such as the local
file system or a distributed file system like HDFS or KFS [15].

9.3.2 Enhancing SAGA-Based MapReduce Performance

The performance enhancements to the SAGA–MapReduce implementation as dis-
cussed in [30] are based on two important changes: (i) rearranging the shuffle phase
and (ii) using a serialized binary format instead of plain text for intermediate data
storage (also available as an input and output format). The first change means that,

206 S. Jha et al.

instead of having the master merge and then sorting the intermediate data by key
before entering the reduce phase, the workers buffer key/value pairs from the map
phase and store them in sorted order on disk, doing an in-memory sort before writ-
ing. Also, since intermediate key/value pairs from a map worker are already sorted,
the reduce workers need to only merge these pairs coming from different map work-
ers while applying the user-defined reduce function to the merged intermediate key
and value list. The second enhancement applies to the storage of the intermediate
key/value pairs in a so-called sequence file format. This file format allows storing
of serialized key/value objects which can be read and merged much faster in the re-
duce phase than text data, as there is no need for costly parsing. We used the Google
Protocol Buffers library for implementing serialization [5]. The processing of input
and output key/value pairs is further enhanced by minimizing unnecessary memory
I/O operations using a zero-copy scheme.

9.3.3 SAGA–MapReduce Set-Up

As with any application which concurrently spans multiple diverse resources or
infrastructures, the coordination between the different application components be-
comes challenging. The SAGA–MapReduce implementation uses the SAGA advert
API for that task and can thus limit the a priori information needed for bootstrap-
ping the application: the compute clients (workers) require (i) the contact address of
the used advert service instance and (ii) a unique worker ID to register with in that
advert service, so that the master can start to assign work items. Both information
are provided by the master via command line parameters to the worker, at startup
time.

The master application requires the following additional information: (i) a set of
resources where the workers can execute, (ii) the location of the input data, (iii) the
target location for the output data, and (iv) the contact point for the advert service
for coordination and communication.

In a typical configuration, for example, three worker instances could be started:
the first could be started via GRAM and PBS on qb.teragrid.org, the second on a pre-
instantiated EC2 image (instance-id i-760c8c1f), and the third on a dynamically
deployed EC2 instance (no instance id given). Note that the startup times for the
individual workers may vary over several orders of magnitudes, depending on the
PBS queue waiting time and VM startup time. The MapReduce master will start to
utilize workers as soon as they are able to register themselves and so will not wait
until all workers are available. That mechanism both minimizes time-to-solution and
maximizes resilience against worker loss. A simple parameter controls the number
of workers created on each compute node; as we will see by varying this parameter,
the chances are good that compute and communication times can be interleaved and
that the overall system utilization can increase (especially in the absence of precise
knowledge of the execution system).

9 Application-Level Interoperability Across Grids and Clouds 207

9.4 Application Level Interoperability: Three-Levels

The motivation of ALI across multiple, heterogeneous, and distributed resources
follows from large-scale scientific applications, such as the Earth Science Grid and
LEAD. However for simplicity of treatment and to focus on the levels of interop-
erability, we will use a simple, self-contained application that has also become the
canonical MapReduce application driver, wordcount.

9.4.1 Interoperability Types

Using the wordcount application, we will demonstrate three types of application
level interoperability. We outline them here:

Type I: Application Interoperability via Adaptors

As discussed, SAGA provides the ability to load a wide range of system-specific
adaptors dynamically. Thus a simple form of interoperability, possibly specific to
applications developed using SAGA, is that an application can use any distributed
systems without changes to the application, thus experiencing cloud–cloud or grid–
cloud interoperability. We refer to this as Type I interoperabilty.

Thanks to the relative simplicity of developing SAGA adaptors, SAGA has been
successfully interfaced to three cloud systems: Amazon’s EC2, Eucalyptus [18]
(a local installation of Eucalyptus at LSU), and Nimbus [6]; and also to a multi-
tude of grid-based environments, including TeraGrid, Loni, and NGS. SAGA-based
applications are thus inherently able to utilize this form of ALI.

Type II: Application Interoperability Using Programming Models

Interoperability at a higher level than adaptors is both possible and often desirable.
An application can be considered interoperable if it is able to switch between back-
end specific programming models. We will discuss an example where the wordcount
application is implemented so that it can utilize either a Sector–Sphere framework
via SAGA for the OCC backend, or the SAGA–MapReduce framework for generic
grid and cloud backends.

Type III: Application Interoperability Using Different Programming Models
for Concurrent Execution

At another level, an application can also be considered interoperable when it
executes multiple programming models concurrently over diverse backends. We

208 S. Jha et al.

demonstrate that a wordcount application uses both Sector–Sphere and SAGA–
MapReduce when spanning multiple backends. The challenges of having different
parts of an application execute concurrently; using different programming models is
conceptually different to loading different adaptors concurrently. Thus we describe
this as a separate type of interoperability.

9.4.2 Experimental Setup

Simulations were performed on shared TeraGrid-LONI (Louisiana Optical Network
Initiative) [7] resources running Globus and SSH; on GumboGrid, a small cluster at
LSU running Eucalyptus; on Amazon’s EC2; on a bare 50-node cluster of the Hun-
garian Academy of Sciences; and on the OCC testbed [8] running Sector–Sphere.
Jobs are started via the respectively available middlewares, via SAGA’s job API.
Data exchange is either performed via streams or via SAGA’s file transfer API,
which can dynamically switch between the various available protocols.

For cloud environments, we support the runtime configuration of VM instances
by staging a preparation script to the VM after its creation and executing it with root
permissions. In particular for apt-get Linux distribution, the post-instantiation soft-
ware deployment is actually fairly painless but naturally adds a significant amount of
time to the overall VM startup (which encourages the use of preconfigured images).

For experiments in this paper, we prepared custom VM images with preinstalled
prerequisites. We utilize preparation scripts solely for some fine tuning of param-
eters: for example, to deploy custom saga.ini files or to ensure the finalization of
service startups before application deployment.

Deploying SAGA–MapReduce framework and the wordcount application on dif-
ferent grids, clouds or clusters requires adapting the configuration to the specific
environment. For example, when running SAGA–MapReduce on EC2, the master
process resides on one VM, while workers reside on different VMs. Depending
on the available adaptors, Master and Worker can perform either local I/O on a
global/distributed file system or remote I/O on a remote, nonshared file system.

It must be noted that we utilized different SAGA–MapReduce versions for the
described experiments: the work described in this paper spans more than 18 months,
and the SAGA–MapReduce implementation has simply evolved over time. As our
primary goal is to demonstrate interoperability and not to document maximal per-
formance, we consider those results valid nonetheless.

9.5 Interoperability Experiments: Wordcount

We use our own implementations of the well-known wordcount application for our
experiments. Wordcount has a well-understood runtime and scaling behavior, and
thus serves us well for focusing the tests on the used frameworks and middlewares.

9 Application-Level Interoperability Across Grids and Clouds 209

The MapReduce based wordcount implementation is described in [30]. For the
Sector–Sphere version of wordcount, we implemented two kernel functions. The
first one is responsible for hashing the words in the data set into different “buck-
ets,” depending on the word’s starting letter. The standard C++ collate hashing
function was used for this purpose. The second kernel function reads each hash
bucket, sorts the words in memory, and outputs the final count of the words in
the data set. For example, a file containing the words (’bread’ ’bee’ ’bee’
’honey’) would be hashed into buckets as (’bread’ ’bee’ ’bee’) and
(’honey’). The second kernel function would read these intermediate bucket
files, sort the words, and produce the result (.bread 1., .bee 2., .honey
1.). The Sphere system is responsible for assigning files for processing, synchro-
nization, and writing output results back to Sector.

9.5.1 Type I ALI: Interoperability via Adaptors

In an earlier paper (Ref. [30]), we performed tests to demonstrate how SAGA–
MapReduce utilizes different infrastructures and provides control over task-data
placement; this led to insight into performance on “vanilla” grids. This work ex-
tends earlier work and establishes that SAGA–MapReduce can provide cloud–cloud
interoperability and cloud–grid interoperability. We performed the following exper-
iments:

1. We compare the performance of SAGA–MapReduce when exclusively running
on a cloud platform to that when on grids. We vary the number of workers (1 to
10) and the data-set sizes varying from 10 MB to 1 GB.

2. For clouds, we then vary the number of workers per VM, so that the ratio is 1:2
and 1:4, respectively.

3. We then distribute the same number of workers across two different clouds, EC2
and Eucalyptus.

4. Finally, for a single master, we distribute workers across grids (QueenBee on the
TeraGrid) and clouds (EC2 and Eucalyptus) with one job per VM.

It is worth reiterating that although we have captured concrete performance fig-
ures, it is not the aim of this work to analyze the data and provide a performance
model. In fact, it is difficult to understand performance implications, as a detailed
analysis of the data and understanding the performance will involve the genera-
tion of “system probes,” as there are differences in the specific cloud system im-
plementation and deployment. In a nutshell, without adjusting for different system
implementations, it is difficult to rigorously compare performance figures for dif-
ferent configurations on different machines. At best we can currently derive trends
and qualitative information. Any further analysis is considered out of scope for this
paper.

It takes SAGA about 45 s to instantiate a VM on Eucalyptus and about 200 s
on average on EC2. We find that the size of the image (say 5 GB versus 10 GB)

210 S. Jha et al.

influences the time to instantiate an image but is within image-to-image instanti-
ation time fluctuation. Once instantiated, it takes from 1–10 s to assign a job to
an existing VM on Eucalyptus or EC2. The option to tie the VM lifetime to the
saga::job_service object lifetime is a configurable option. It is also a matter
of simple configuration to vary how many jobs (in this case workers) are assigned
to a single VM: the default is 1 worker per VM. The ability to vary this number is
important—as details of actual VMs can differ—and useful for our experiments.

Results and Analysis

The total time-to-solution (Ts) of a SAGA–MapReduce job can be decomposed as
the sum of three primary components tpre, tcomp, and tcoord. Here tpre is defined as
preprocessing time, which covers the time to chunk the data into fixed-size data
units, to distribute them, and also to spawn the job. tpre does not include the time
required to start VM instances. tcomp is the time to actually compute the map and re-
duce function on a given worker, whilst tcoord is the time taken to assign the payload
to a worker, update records, and to possibly move workers to a destination resource;
in general, tcoord scales as the number of workers increases.

Table 9.2 shows performance measurements for a variety of worker placement
configurations. The master places the workers on either clouds or on the TeraGrid

Table 9.2 Performance data for different configurations of worker placements

#workers Data size (MB) Ts (s) Tsp (s) Ts − Tsp (s)

TG AWS

4 – 10 8.8 6.8 2.0

– 1 10 4.3 2.8 1.5

– 2 10 7.8 5.3 2.5

– 3 10 8.7 7.7 1.0

– 4 10 13.0 10.3 2.7

– 4 (1) 10 11.3 8.6 2.7

– 4 (2) 10 11.6 9.5 2.1

– 2 100 7.9 5.3 2.6

– 4 100 12.4 9.2 3.2

– 10 100 29.0 25.1 3.9

– 4 (1) 100 16.2 8.7 7.5

– 4 (2) 100 12.3 8.5 3.8

– 6 (3) 100 18.7 13.5 5.2

– 8 (1) 100 31.1 18.3 12.8

– 8 (2) 100 27.9 19.8 8.1

– 8 (4) 100 27.4 19.9 7.5

9 Application-Level Interoperability Across Grids and Clouds 211

Table 9.3 Performance data for different configurations of worker placements on TG, Eucalyptus-
Cloud, and EC2

#workers Data size (MB) Ts (s) Tsp (s) Ts − Tsp (s)

TG AWS Eucal.

– 1 1 10 5.3 3.8 1.5

– 2 2 10 10.7 8.8 1.9

– 1 1 100 6.7 3.8 2.9

– 2 2 100 10.3 7.3 3.0

1 – 1 10 4.7 3.3 1.4

1 – 1 100 6.4 3.4 3.0

2 2 – 10 7.4 5.9 1.5

3 3 – 10 11.6 10.3 1.6

4 4 – 10 13.7 11.6 2.1

5 5 – 10 33.2 29.4 3.8

10 10 – 10 32.2 28.8 2.4

(TG). The configurations, separated by horizontal lines, are classified as either all
workers on the TG or having all workers on EC2. For the latter, unless otherwise
indicated in parentheses, every worker is assigned to a unique VM. In the final set
of rows, the number in parentheses indicates the number of VMs used. Note that the
spawning times depend on the number of VMs, even if it does not include the VM
startup times.

Table 9.3 shows data from our interoperability tests. The first set of data estab-
lishes cloud–cloud interoperability. The second set (rows 5–11) shows interoperabil-
ity between grids–clouds (EC2). The experimental conditions and measurements are
similar to Table 9.1.

We find that in our experiments tcomp is typically greater than tcoord, but when
the number of workers gets large, and/or the computational load per worker small,
tcoord can dominate (internet-scale communication) and increase faster than tcomp
decreases; thus, overall Ts can increase for the same dataset size, even though the
number of independent workers increases. The number of workers associated with
a VM also influences the performance, as well as the time to spawn; for example,
as shown by the three lower boldface entries in Table 9.1, although four identical
workers are used depending upon the number of VMs used, Tc (defined as TS −
Tspawn) can be different. In this case, when four workers are spread across four VMs
(i.e., default case), Tc is lowest, even though Tspawn is the highest; Tc is highest when
all four are clustered onto one VM. When exactly the same experiment is performed
using dataset of size 10 MB, it is interesting to observe that Tc is the same for four
workers distributed over one VM as it is for four VMs, whilst when the performance
for the case where four workers are spread-over two VMs out-perform both (2.1 s).

Table 9.3 shows performance figures when equal numbers of workers are spread
across two different systems; for the first set of rows, workers are distributed on

212 S. Jha et al.

Fig. 9.2 Comparison of
enhanced SAGA–MR
performance versus early
version of SAGA–MR on the
ILAB cluster using eight
workers running on eight
physical machines. Jobs were
launched via SSH and used
NFS for file operations

EC2 and Eucalyptus. For the next set of rows, workers are distributed over the TG
and Eucalyptus, and in the final set of rows, workers are distributed between the TG
and EC2. Given the ability to distribute at will, we compare performance for the fol-
lowing scenarios: (i) when four workers are distributed equally (i.e., two on each)
on a TG machine and on EC2 (1.5 s) with the scenarios when (ii) all four work-
ers are either exclusively on EC2 (2.7 s) or (iii) all workers are on the TG machine
(2.0 s) (see Table 9.1, boldface entries on the first and fifth lines). It is interesting
that, in this case, Tc is lower in the distributed case than when all workers are ex-
ecuted locally on either EC2 or TG; we urge that not too much be read into this,
as it is just a coincidence that a sweet spot was found where on EC2, four workers
had a large spawning overhead compared to spawning two workers, and an increase
was in place for two workers on the TG. Also it is worth reiterating that for the
same configuration, there are experiment-to-experiment fluctuations (typically less
than 1 s). The ability to enhance performance by distributed (heterogeneous) work-
loads across different systems remains a distinct possibility; however, we believe
more systematic studies are required.

The original SAGA–MapReduce version (as used for the experiments presented
above) physically chunked the input data files. Our evolved version, however, cre-
ates logical chunks (i.e., no file writing takes place). It is thus fair to compare their
time-to-solution performance by subtracting the chunking time from the early ver-
sion’s job completion time. Figure 9.2 thus shows the corrected performance data for
the early version and enhanced version of SAGA–MapReduce. Eight workers were
spawned via the SAGA SSH adaptor on eight physical machines, and data were
exchanged through a shared NFS file system. The figure shows that the SAGA–
MapReduce enhancements make a difference for larger data sets. This can be at-
tributed to the fact that the more efficient shuffle phase implementation, which re-
duces disk I/O and CPU usage in the reduce phase by doing only a merge, outper-
forms the old implementation, which performed a merge–sort of all the intermediate
output files.

9 Application-Level Interoperability Across Grids and Clouds 213

9.5.2 Type II ALI: Application Performance Using SAGA-Based
Sphere and MapReduce

Experiment I: Varying Chunk Sizes

For the Sector–Sphere-based wordcount, Sector maintains and tracks data in the
cloud at the file level. There is no support in Sphere to control the chunk sizes
of files assigned to the Sphere processing engines. Therefore, to experiment with
different chunk sizes, the files were split manually into smaller chunks before the
wordcount application was launched. In this set of experiments, we vary the chunk
size from 16 MB to 256 MB, while keeping the number of SPEs constant at 8,
and the data size constant at 4 GB. Each SPE is running on a separate physical
node in the cluster. These results are presented in Fig. 9.3. Note that both data and
computation were distributed for these experiments. As evident from the results we
collected, a correlation exists between the chunk sizes and performance of Sphere.
As the chunk sizes increase, the performance deteriorates. In particular, we observe
a decline in performance after the 64-MB data, in that there is an increase in the
gradient of the plot, after chunk sizes have reached 64 MB.

We performed the same set of experiments with SAGA–MapReduce-based word-
count and observed a completely different performance trend as the chunk size var-
ied. We use an HDFS file system running datanodes on each of the eight workers
and set the number of reduce tasks to 8. In case of SAGA–MapReduce, perfor-
mance increases with larger chunk sizes, reaching Sphere’s performance at the 256-
MB data point. According to our analysis, this can be attributed to the fact that for
SAGA–MapReduce, tcoord can dominate the total time-to-solution for large num-
ber of workers (or equivalently smaller chunk sizes). The larger the chunk size, the
smaller the number of map tasks launched (workers), and provided that the data
workload assigned to each worker is not too high, tcoord decreases with increasing
chunk size.

Fig. 9.3 Performance of
SAGA–MapReduce (left axis)
and SAGA–Sphere (right
axis) when varying chunk
size while keeping the
amount of processed data
constant at 4 GBs. Data and
computation were distributed
for these experiments

214 S. Jha et al.

Experiment II: Varying Workers

We perform two sets of experiments with SAGA–Sphere running the same word-
count application. We keep the chunk size constant at 64 MB, the data size fixed at
4 GB (as previously), but vary the number of workers in two configurations. In the
first configuration, we use Sphere on a local data and local compute configuration.
In the second configuration, we observe how the solution scales to a distributed data
and distributed compute configuration. These results are illustrated in Fig. 9.4.

For the local–local configuration, we launch Sector and Sphere on a single phys-
ical node. For the distribute–distribute configuration, we launch Sector and Sphere
on one physical node per SPE. For the dataset sizes considered, we observe good
performance from four to six distributed workers, before which the coordination
costs due to the number of SPEs starts to get high, with a concomitant increase in
time-to-solution. This is a nice but simple demonstration of the advantage of dis-
tribution (logically distributed in this case, if not physically distributed). Sector can
maintain file replicas to achieve optimal data distribution between SPEs and min-
imize synchronization overhead. For the purpose of our experiments, we limited
Sector to not create any replicas.

We perform similar measurements via SAGA–MapReduce: while keeping the
chunk size constant at 64 MB and the data size at 4 GB, we note the time-to-solution
of the wordcount application in the two configurations described for SAGA–Sphere
above. For the distribute–distribute configuration, we use HDFS as the distributed
file system and launch jobs using the SAGA SSH job adaptor. In contrast to the
varying chunk size experiments, we set the number of reduce tasks to be equal
to the number of workers spawned. For the local–local configuration, we launch
workers on the machine running the master as separate processes and use the local
file system for file operations. As can be seen in Fig. 9.5, SAGA–MapReduce scales
as expected in the distribute–distribute configuration. However, for the local–local
configuration, performance degrades when adding more workers. Since each map
task writes as many files as the number of reduce tasks at the same time, and each

Fig. 9.4 Comparison of
SAGA–Sphere performance
when varying the number of
workers between 2 and 10 in
two configurations: (1) local
data and computation and
(2) distributed data and
computation

9 Application-Level Interoperability Across Grids and Clouds 215

Fig. 9.5 Comparison of
SAGA–MapReduce when
varying the number of
workers between 2 and 10 in
two configurations: (1) local
data and computation and
(2) distributed data and
computation

reduce task needs to read from as many files as the number of input chunks, the
number of concurrent disk I/O increases very quickly; this can cause a bottleneck
when performing computations on one physical node (I/O system). According to
Fig. 9.5, the optimal number of workers is 6 for the local–local configuration. We
did not include results for more than 10 workers in order to preserve the linear scale.

SAGA gives us the opportunity to experiment with different programming mod-
els very easily. As evident from the data plots in Fig. 9.3, certain behavioral trends
for SAGA–Sphere and SAGA–MapReduce emerge. In Experiment 1, where we
keep the number of workers constant and vary the chunk sizes, the trends be-
tween SAGA–MapReduce and Sphere are inversed: the Sphere performance dete-
riorates with increasing chunk sizes, while the performance of SAGA–MapReduce
increases. This behavior suggests that SAGA–MapReduce’s synchronization over-
head to manage smaller chunk sizes compared to the speed up achieved through
parallelism is much higher. In the case of the wordcount application, SAGA–
MapReduce appears to be more suitable for coarse grained computations. SAGA–
Sphere, on the other hand, yields better performance from smaller chunks sizes
(a larger amount of files), making it suitable for finer grained computations with
better data distribution.

In Experiment 2, where we keep the chunk size to a constant of 64 MB, SAGA–
Sphere exhibits a trend where adding more SPEs has a positive impact on perfor-
mance. However, at the 8 SPEs and 10 SPEs data points, we see a decline in per-
formance, possibly due to high synchronization costs between the workers. What
is interesting to notice are the two data points at 64-MB chunk size and at 16-MB
chunk size for SAGA–Sphere in Fig. 9.3. Reducing the chunk size by 75%, thereby
providing better data distribution with a larger number of files, we see almost a 65%
increase in performance. This further confirms our supposition that good data distri-
bution had a major impact on Sphere’s performance for the wordcount application.
We do not claim that fine grained computation granularity is a concrete determi-
nant of SAGA–Sphere’s performance in a general case, but a noticeable aspect that
emerges through its comparison with SAGA–MapReduce.

216 S. Jha et al.

9.5.3 Type III ALI: Interoperability Concurrency

We discuss the third type of interoperability in this section, where SAGA–
MapReduce and SAGA–Sphere are used in conjunction to solve the wordcount
problem. We first use the “netperf” utility to measure the throughput from the client
host to the SAGA–MapReduce master node and SAGA–Sphere master node. In our
case, the throughput measured to the two nodes was approximately equal (935 MB/s
to SAGA–Sphere and 925 MB/s to SAGA–MapReduce). Based on these metrics,
we split the 4.0-GB data set into two equal 2.0-GB parts. This is to ensure that the
data transfer time to both masters is approximately the same. We configured both
systems to utilize four workers each and 64-MB chunk sizes. The data transfer time
to the Sector cloud took a total of 97.8 seconds and 10.4 seconds to the SAGA–
MapReduce master node. The longer transfer time to Sector can be credited to the
overhead incurred from registering the files in Sector. The data transfer was done
sequentially.

We found that SAGA–Sphere took a total of 441.3 seconds to process the 2.0-GB
data, while SAGA–MapReduce took a total of 769 seconds. Aggregating the output
results from the two systems took a negligible amount of time (only 0.9 seconds).
The data was already sorted and hence could be merged in almost constant time.
The above simple experiment of combining two varied programming models for
solving a common problem paves the way to further investigation into smarter data
and compute placement techniques. The total time taken to execute the wordcount
application in this case was approximately 877.9 seconds. It is interesting to note
that this performance measure lies between 1329.96 seconds for 8 SPEs and 716
seconds for 8 SAGA–MapReduce workers at a 64-MB chunk size.

9.6 Interoperability Experiments: Ensemble of Biomolecular
Simulations

Several classes of applications are well suited for distributed environments. Proba-
bly the best known and most powerful examples are those that involve an ensemble
of decoupled tasks, such as simple parameter sweep applications [12]. In the follow-
ing we investigate an ensemble of (parallel HPC) MD simulations. Ensemble-based
approaches represent an important and promising attempt to overcome the general
limitations of insufficient time-scales and specific limitations of inadequate con-
formational sampling arising from kinetic trappings. The fact that one single long-
running simulation can be substituted for an ensemble of simulations, make these
ideal candidates for distributed environments. This provides an important general
motivation for researching ways to support scale-out and thus enhance sampling
and to thereby increase “effective” time-scales studied.

The physical system we investigate is the HCV internal ribosome entry site and
is recognized specifically by the small ribosomal subunit and eukaryotic initiation
factor 3 (eIF3) before viral translation initiation. This makes it a good candidate for
new drugs targeting HCV. The initial conformation of the RNA is taken from the

9 Application-Level Interoperability Across Grids and Clouds 217

Fig. 9.6 An overview of the SAGA-based Pilot Job: The SAGA Pilot Job API is currently imple-
mented by three different backends: one for grids, Condor, and for clouds

NMR structure (PDB ID: 1PK7). By using multiple replicas, the aim is to enhance
the sampling of the conformational flexibility of the molecule and the equilibrium
energetics. NAMD [31] is used as MD code.

To efficiently execute the ensemble of batch jobs without the necessity to queue
each individual job, the application utilizes the SAGA BigJob framework [28].
BigJob is a Pilot-Job framework that provides the user a uniform abstraction to
grids and clouds independent of any particular cloud or grid provider that can be in-
stantiated dynamically. Pilot-Jobs are an execution abstraction that have been used
by many communities to increase the predictability and time-to-solution of such
applications. Pilot-Jobs have been used to (i) improve the utilization of resources,
(ii) to reduce the net wait time of a collection of tasks, (iii) facilitate bulk or high-
throughput simulations where multiple jobs need to be submitted which would oth-
erwise saturate the queuing system, and (iv) as a basis to implement application-
specific scheduling decisions and policy decisions.

As shown in Fig. 9.6, BigJob currently provides an abstraction to grids, Con-
dor pools, and clouds. Using the same API, applications can dynamically allocate
resources via the big-job interface and bind subjobs to these resources.

In the following we use an ensemble of MD simulations to investigate different
BigJob usage modes and analyze the time-to-completion Tc in different scenarios.

9.6.1 Scenario A: Tc for Workload for Different Resource
Configurations

In this scenario and as proof of scale-out capabilities using type I interoperability
provided by SAGA, we use SAGA-BigJob (a higher-level package) to run replicas

218 S. Jha et al.

Fig. 9.7 A1–A3: Collective Usage of Grid, Condor, and Cloud Resources for Workload of 8 Repli-
cas: The experiments showed that if the grid and Condor resource Poseidon has only a light load,
no benefits for using additional cloud resources exist. However, the introduction of an additional
Condor or grid resource significantly decreases Tc

across different types of infrastructures At the beginning of the experiment, a par-
ticular set of Pilot-Jobs is started in each environment. Once a Pilot-Job becomes
active, the application assigns replicas to this job. We measure Tc for different re-
source configurations using a workload of eight replicas each running on eight cores.
The following setups have been used:

• Scenario 1 (A1): Resource I and III – Clouds and GT2-based grids
• Scenario 2 (A2): Resource II and III – Clouds and Condor grids
• Scenario 3 (A3): Resource I, II and III – Clouds, GT2 and Condor grids

For this experiment, the LONI clusters, Poseidon and Oliver, are used as grid and
Condor resources and Nimbus as cloud resource.

Figure 9.7 shows the results. For the first three bars, only one infrastructure was
used to complete the 8-replica workload. Running the whole scenario in the Science
Cloud resulted in a quite poor but predictable performance—the standard deviation
for this scenario is very low. The LONI resources are about three times faster than
the Science Cloud, which corresponds to our earlier findings. The performance of
the Condor and grid BigJob is similar, which can be expected since the underlying
physical LONI resources are the same. Solely, a slightly higher startup overhead can
be observed in the Condor runtimes.

In the next set of three experiments, multiple resources were used. For Scenario
A1 (the fourth bar from left), two replicas were executed on the Science Cloud.

9 Application-Level Interoperability Across Grids and Clouds 219

The offloading of two replicas to an additional cloud resource resulted in a light im-
provement of Tc compared to using just LONI resources. Thus, the usage of cloud
resources must be carefully considered since Tc is determined by the slowest re-
source, i.e., Nimbus. As described earlier, the startup time for Nimbus images is in
particular for such short runs significant. Also, NAMD performs significantly worse
in the Nimbus cloud than on Poseidon or Oliver. Since the startup time on Nim-
bus averages to 357 s and each of eight core replicas runs for about 363 s, at least
720 s must be allowed for running a single replica on Nimbus. Thus, it can be con-
cluded that if resources in the grids or Condor pool are instantly available, it is not
reasonable to start additional cloud resources. However, it must be noted that there
are virtual machines types with a better performance available, e.g., in the Amazon
cloud. These VMs are usually associated with higher costs (up to 2.40 $ per CPU
hour) than the Science Cloud VMs. For a further discussion of cost trade-offs for
scientific computations in clouds, see Deelman et al. [17].

9.6.2 Scenario B: Investigating Workload Distribution for a
Given Tmax

Given that clouds provide the illusion of infinite capacity, or at least queue wait-
times are nonexistent, it is likely that when using multiple resource types and with
loaded grids/clusters (e.g., TeraGrid is currently oversubscribed, and typical queue
wait times often exceed 24 hours), most subjobs will end up on the cloud infrastruc-
ture. Thus, in Scenario B, the resource assignment algorithm we use is as follows:
We submit tasks to noncloud resources first and periodically monitor the progress of
the tasks. If insufficient jobs have finished when time equal to TX has elapsed (de-
termined per criteria outlined below), then we move the workload to utilize clouds.
The underlying basis is that clouds have an explicit cost associated with them, and
if jobs can be completed on the TG/Condor-pool while preserving the performance
constraints, we opt for such a solution. However, if queue loads prevent the perfor-
mance requirements being met, we move the jobs to a cloud-resource, which we
have shown has less fluctuation in Tc of the workload.

For this experiment, we integrated a progress manager that implements the de-
scribed algorithm into the replica application. The user has the possibility to specify
a maximum runtime and a check interval. At the beginning of each check inter-
val, the progress manager compares the number of jobs done with the total num-
ber of jobs and estimates the total number of jobs that can be completed within
the requested timeframe. If the total number of jobs is higher than this estimate,
the progress monitor instantiates another BigJob object request additional cloud re-
sources for a single replica. In this scenario, each time an intermediate target is not
met, four additional Nimbus VMs sufficient for running another eight-core replica
are instantiated.

In the investigated scenario, we configured a maximum runtime of 45 minutes
and a progress check interval of 4 minutes. We repeated the same experiment
10 times at different times of the day. In 6 out of 10 cases the scenario completed in

220 S. Jha et al.

about 8 minutes. However, the fluctuation in particular in the waiting time on typ-
ical grid resources can be very high. Thus, in four cases it was necessary to start
additional VMs to meet the application deadline. In two cases three Pilot-Jobs, each
with eight cores, had to be started, and in one case a single Pilot-Job was suffi-
cient. In a single case the deadline was missed solely due to the fact that not enough
cloud resources were available, i.e., we are only able to start two instead of three
Pilot-Jobs.

9.7 Future Work: Windows Azure

As alluded to in earlier parts of this chapter, we have investigated and analyzed mul-
tiple platforms, existing (GT2-based canonical Grids) and emerging infrastructure
(EC2). Azure is an emerging cloud platform developed and operated by Microsoft.
Azure provides different abstractions, building blocks for creating scalable and re-
liable scientific applications without the need for on-premise hardware; we believe
that Azure-based abstractions and services have the potential to be very effective in
the design, development, and deployment of distributed applications. Due to these
capabilities, we will focus on Azure in the closing section of this chapter, but as
many details are still being worked out, we present this analysis as future (high-
potential) work.

Azure follows the platform as a service paradigm offering an integrated solution
for managing compute- and data-intensive tasks as well as web applications. The
platform is able to dynamically scale applications without the need to manually
manage tasks and deployments on virtual machine level. After a brief introduction
of the abstractions that are provided of Azure, we discuss how Azure’s abstractions
and capabilities can be utilized for ensemble-based biomolecular simulations of the
type discussed in Sect. 9.6.

9.7.1 Understanding Azure-System Abstractions

Azure provides different higher-level services, e.g., the Azure AppFabric or Azure
Storage, that can be accessed via HTTP/REST from anywhere. Windows Azure
offers a platform for on-demand computing and for hosting generic server-side ap-
plications. The so-called Azure fabric controller automatically monitors alls VMs,
automatically reacts to hardware and software failures, and manages application up-
grades.

Compute

Windows Azure formalizes different types of virtual machines into so-called roles.
Web roles, e.g., are used to host web applications and frontend code, while worker

9 Application-Level Interoperability Across Grids and Clouds 221

roles are well suited for background processing. While these roles target specific
scenarios, they are also highly customizable. Worker roles can, e.g., run native code.
The application must solely implemented a defined entry point, which is then called
by Azure. The Azure fabric controller automatically manages and monitors appli-
cations, handles hardware and software failures, as well as updates to the operat-
ing system or to the application. Commonly, scientific applications utilize worker
roles for compute- and data-intensive tasks. AzureBlast [26], e.g., heavily relies on
worker roles for computing biosequences.

Storage

For storing large amounts of data, the Azure storage platform provides three key
services: the Azure Blob Storage for storing large objects of raw data, the Azure
Table Storage for semi-structured data, and the Azure Queue Storage for imple-
menting message queues. The data is storage replicated across multiple data centers
to protect it against hardware and software failures. In contrast to other cloud of-
ferings (e.g., Amazon S3), the Azure Storage Services provide strong consistency
guarantees, i.e., all changes are immediately visible to all future calls. While even-
tual consistency as implemented by S3 [16] usually offers a better performance and
scalability, it has some disadvantages mainly caused by the fact that the complexity
is moved to the application space.

The blob storage can store file up to a size of 1 TB, which makes it particularly
well suited for data-intensive application. The Amazon S3 service, e.g., restricts the
maximum file size to 5 GB. Further, the access to the blob storage can be optimized
for certain usage modes: block blob can be split into chunks that can be uploaded
and downloaded separately and in parallel. Thus, block blobs are well suited for
uploading and streaming large amounts of data. Page blob manage the storage as an
array of pages. Each of these pages can be addressed individually, which makes page
blobs a good tool for random read/write scenarios. Azure XDrive provides a durable
NTFS volume, which is backed by a page blob. In particular, legacy applications
that heavily utilize file-based storage can simply be ported to Azure using XDrive.

The Azure Queue Service provides a reliable storage for the delivery of mes-
sages within distributed applications. The queue service is ideal to orchestrate the
various components of a distributed applications, e.g., by distributing work pack-
ages or collecting results, which could be running on Azure or on another resource,
e.g., a science cloud.

The Azure Table Storage is ideally suited for storing structured data. Unlike tra-
ditional relational database systems, the table storage is designed with respect to
scale-out, low cost, and high performance similar to Google’s BigTable [14] system.
For legacy application, Azure also provides an SQL-Server-based, relational datas-
tore called SQL Azure. In contrast to Azure tables, SQL storage supports common
relation database features, such as foreign keys, joins, and SQL as query language.

222 S. Jha et al.

9.7.2 Azure: Understanding the Applications

The Azure platform provides many capabilities and characteristics that are useful
for scientific applications. Clouds like Azure are particularly well suited for loosely
coupled applications that demand a large number of processors but do not require a
low-latency interconnect.

Although loosely coupled ensemble-based simulations are computationally well
suited for cloud infrastructures, coordinating multiple ensemble members remains a
challenge, as does data management. In the following we discuss a generic Azure-
based architecture that addresses these concerns and is able to facilitate a range of
applications execution scenarios.

Azure and Bio-EnMD

Figure 9.8 illustrates an example of a framework for ensemble-based simulations
built on top of the Azure building blocks. The Replica Manager (RM), also called
Ensemble Manager, utilizes a web role to communicate with the end-user. This role
is mainly responsible for accepting simulation requests from the end-user and for or-
chestrating the simulation runs. Later these capabilities can be extended by support-
ing more advanced steering and visualization features. The RM creates work pack-
ages, the so called replicas, distributes them via the Azure Queue Service and later

Fig. 9.8 Azure-based Bio-Ensembles: the ensemble-based application utilizes the queue storage
for distributing work packages from the Replica Manager running on a web role to the replica
agents running on multiple worker roles

9 Application-Level Interoperability Across Grids and Clouds 223

collects the results stored by the replicas in the Azure storage. The Replica Agents
run within Azure worker roles, which are ideally suited for running background
tasks. Azure enables users to run native code within worker roles, i.e., the framework
will be able to support numerous MD codes, e.g., NAMD [31] and AMBER [13].
Azure currently does not support MPI computations across multiple worker roles,
and thus each MD simulation is limited to eight cores.

The worker roles running the replica agent are managed by the RM using the
Azure Service Management API. In the initial version we will support the automatic
start and stop of hosted services. In the final version there will be a possibility to
automatically deploy agent code without the need in preconfiguring the VMs. Once
the agents are started, they query the Azure queue for new work items. If a work
item is found, a simulation task is started, e.g., by running the requested MD code
with right parameters. The number of MD jobs per worker role depends on the size
of the worker role—Azure currently supports worker roles up to eight cores.

The ensemble use case can greatly benefit from the capabilities of Azure. If
greater accuracy is required or a deadline must be met, it can seamlessly scale-
out to more worker roles. The Azure fabric controller monitors all VMs running the
worker roles and automatically restarts the worker roles if necessary. Further, Azure
provides various kinds of reliable and scalable storage options to express different
coordination schemes, e.g., the master–worker communication can be conducted via
the described message queue.

Azure and MapReduce

For data-intensive applications, such as MapReduce -based applications, Azure pro-
vides various interesting services: The blob storage is well suited for storing large
amounts of file data, which can also be accessed via an NTFS file system. Data
can be processed via worker roles. Further, Azure offers the possibility to express
data/compute colocations using so-called affinity groups. MapReduce application
require capabilities similar to the Bio-EnMD: mapping and reduction tasks can be
spawned dynamically using the Service Management API. For storing and trans-
ferring data, Azure provides various options (xDrive versus block blob versus page
blob). We will further evaluate these alternatives in particular in comparison to dis-
tributed file systems in the future.

9.7.3 Assessing Azure-System: Abstractions and Applications

To aid an understanding of application characteristics suited to the Azure platform,
we briefly introduce a common categorization of cloud services (see Fig. 9.9). The
proposed service layers consist of the following: the software as a service layer
(SaaS), the platform as a service (PaaS) layer, and the infrastructure as a service
(IaaS) layer. Further, clouds can also be classified according to their deployment

224 S. Jha et al.

Fig. 9.9 Cloud Taxonomy and Application Examples: Clouds provide services at different levels
(IaaS, PaaS, SaaS). The amount of control available to users and developers decreases with the
level of abstraction. According to their deployment model, clouds can be categorized into public
and private clouds

model into public and private clouds (for further details, refer to [22]). Azure offers
services on the platform as a service layer and thus, generally removes the need to
manually manage low-level details as virtual machine configurations, operating sys-
tem installations and updates, etc. At the same time worker roles provide an attrac-
tive environment for running compute- and data-intensive applications. In contrast
to IaaS clouds, applications can benefit from features, such as failure tolerance: the
fabric controller, e.g., monitors all applications running in a role environment and
restarts them if necessary.

The majority of scientific applications (e.g., applications from life sciences, high-
energy physics, astrophysics, computational chemistry) that have been ported to
cloud environments (see [10, 19, 29] for examples), rely on low-level IaaS cloud
services and solely utilize static execution modes: A scientist leases some virtual re-
sources in order to deploy their testing services. One may select different number of
instances to run their tests on. An instance of a VM is perceived as a node or a pro-
cessing unit. In contrast to traditional IaaS clouds, Azure provides different benefits:
Azure operates on a higher level of abstractions and removes the need to manage
details, such as configuration and patching of the operating system. Azure applica-
tions are declaratively described and packaged; the fabric controller automatically
handles the mapping of these applications to available hardware.

Azure provides several core services supporting various interesting application
characteristics and patterns. Compute-intensive tasks can naturally be mapped to
worker roles, while the communication and coordination between these roles is

9 Application-Level Interoperability Across Grids and Clouds 225

Fig. 9.10 (a) NAMD
Runtimes on Different
Resource Types: The graph
shows that native HPC
resource generally
outperform cloud resources in
particular when running
applications across multiple
nodes. However, the new
high-memory eight-core EC2
instance type was able to
complete a replica run faster
than QB or Poseidon.
(b) NAMD Performance on
Azure and EC2: In particular,
on smaller VM sizes, Azure
outperforms EC2. On
eight-core VMs, EC2 shows a
slightly better performance

commonly done via the Azure storage services. Worker roles can run not only
.NET code, but are also capable of executing native code. However, Azure imposes
some limitations in the ability to scale up and out. The largest supported VM has
eight cores, 14 GB of memory, and 2 TB of disk space. Further, MPI applications
can currently not be run on Azure. While other IaaS clouds can run MPI jobs, the
performance usually degrades significantly when running jobs across multiple VMs
(see Fig. 9.10a).

There exist a large number of physical problems that do not require high-end
HPC hardware and interconnects and can easily scale out on Azure benefiting from
the ability to acquire and release resources on-demand. An increasing number of
applications directly target distributed infrastructures instead of high-end machines.
For example, ensemble-based molecular dynamics approaches utilize multiple sets
of simulations of shorter duration instead of a single longer simulation to support a
more efficient phase-space sampling. Also, such simulations often require the ability
to acquire additional resources if, e.g., a certain simulation event occurs that requires
the spawning of an additional replica. Such an application can greatly benefit from
Azure capability to dynamically allocate resources on demand. This capability is
also useful for applications where the execution time and resource requirements can-
not be determined exactly in advance, either due to changes in runtime requirements

226 S. Jha et al.

or interesting changes in application structure (e.g., different solver with different
resource requirement or a different workflow path [24]).

Most research has solely attempted to manually customize legacy scientific appli-
cations in order to accommodate them into a cloud infrastructure. Benchmark tests
on both cloud infrastructures (EC2, Azure) where a VM does not cross physical
nodes and conventional computational clusters indicated no significant difference in
the performance as measured by execution (wall-clock) time and number of proces-
sors used. Figure 9.10b presents an initial performance assessment of Azure for MD
simulations. Azure outperforms EC2, which is noteworthy, since the costs for 2-, 4-,
and 8-core VMs are drastically lower on Azure. Since the underlying hardware is
not known, one can only speculate about the reason. Microsoft controls the hard-
ware in its data center and optimizes its custom-built Azure Hypervisor with respect
to this hardware [25], which could be a reason for better performance. In summary,
Azure offers a good price/performance ratio, in particular, in comparison with EC2.

For data-intensive applications, Azure provides several interesting storage op-
tions: xDrive offers file system access to the Azure storage service, which is in par-
ticular relevant for applications that manage file-based data flows The blob storage
is capable of storing large amounts of data, a page blob, e.g., can store files up to a
size of 1 TB. In comparison, Amazon S3 is only capable of storing file with a size of
up to 5 GB, the Google Storage for Developer file size limit is at 100 GB. The blob
storage supports two different data access patterns: block blobs are designed for
continuous access, such as data streaming, while page blobs can address each page
individually and are particularly well suited for random access. These properties
can be mapped to the characteristics of the respective application, e.g., a MapRe-
duce application usually accesses data in large chunks, which is well supported by
the block blob. In future we will investigate these implementation alternatives and
performance trade-offs in conjunction with the proposed applications as part of this
project.

9.8 Discussion and Conclusions

The aim of this chapter has been to show several types (and levels) of interoperabil-
ity; although driven by proof-of-capability experiments and results therein, there are
deeper questions that motivate this work and define the research methodology. As
alluded to in the opening section, the volume and the degree-of-distribution of data
is increasing rapidly; this imposes a need for applications to work across a range
of distributed infrastructures using several programming models; this is consistent
with the fact that it is not possible to localize exa-bytes of data. Thus, on the one
hand, there is a need to decouple PM from infrastructures and provide a range of
PM at the application developer’s disposal. On the other hand, in order to build
empirical models or validate existing predictions of performance, it is important to
establish and experiment with programming models and data-oriented algorithms
(e.g., streaming) on a range of systems. A critical and necessary step to achieve
both is to provide application-level interoperability as discussed.

9 Application-Level Interoperability Across Grids and Clouds 227

In this chapter, we discussed two important (classes) of applications, data-
intensive SAGA–MapReduce wordcount and compute-intensive ensemble-based
molecular-dynamics simulations. We posited three levels of interoperability and,
for SAGA–MapReduce wordcount, carried out performance tests at all three levels.
At the lowest level, SAGA–MapReduce demonstrates how to decouple the devel-
opment of applications from the deployment details of the runtime environment
(Type I ALI). It is critical to reiterate that using this approach, applications remain
insulated from any underlying changes in the infrastructure—not just grids and dif-
ferent middleware layers, but also different systems with very different semantics
and characteristics, whilst being exposed to the important distributed functionality.

With implementations of the two application frameworks, SAGA-based Sector–
Sphere and the SAGA–MapReduce implementation, we also demonstrated Type
II ALI: applications can seamlessly switch between backends by switching frame-
works encapsulating different programming models. Finally, by concurrently us-
ing Sector–Sphere MapReduce and SAGA–MapReduce, we demonstrated Type III
ALI, allowing the application to span a wide variety of backends concurrently and
efficiently.

Our approach does not confine us to MapReduce and applications based upon
MapReduce; SAGA is also capable of supporting additional programming models,
like Dryad. We are also developing applications with nontrivial data access, transfer,
and scheduling characteristics and requirements, and deploying them on different
underlying infrastructure guided by heuristics to seek optimized performance. This
analysis is done through developing performance models of transferring data be-
tween frameworks, as well as the distribution of the computing resources in the envi-
ronment. Based on this analysis, the data is placed efficiently, and a subset of nodes
and frameworks maybe chosen to perform the necessary computations. The shuf-
fled data is also cached for future computations. We have embarked on the creation
of components that facilitate intelligence and flexibility in data placement relative
to the computational resource [9]. These components are connected in frameworks
using SAGA, and thus further the agenda of general-purpose programming models
with efficient run-time support that can utilize multiple heterogeneous resources.

In Sect. 9.6, we showed how SAGA can be used to develop frameworks such as
infrastructure-independent Pilot-Jobs and demonstrated the scaling-out over mul-
tiple distinct resources. Finally, in Sect. 9.7, we discussed Azure, some of the
system-level abstractions that it provides and analyzed how these can be utilized
for ensemble-based molecular dynamics simulations. We anticipate significant ac-
tivity in both scaling-up the use of Azure (for both applications discussed here and
other novel applications) and integrating Azure with other infrastructure via the use
of SAGA in the near future.

Acknowledgements SJ acknowledges UK EPSRC grant number GR/D0766171/1 for support-
ing SAGA and the e-Science Institute, Edinburgh for the research theme “Distributed Programming
Abstractions.” SJ also acknowledges financial support from NSF-Cybertools and NIH-INBRE
Grants, while ME acknowledges support from the grant OTKA NK 72845. We also acknowl-
edge internal resources of the Center for Computation & Technology (CCT) at LSU and computer
resources provided by LONI/TeraGrid for QueenBee. We thank Chris Miceli, Michael Miceli, Ka-
terina Stamou, Hartmut Kaiser, and Lukasz Lacinski for their collaborative efforts on early parts

228 S. Jha et al.

of this work. We thank Mario Antonioletti and Neil Chue Hong for supporting this work through
GSoC-2009 (OMII-UK Mentor Organization).

References

1. Jha, S., Merzky, A., Fox, G.: Clouds provide grids with higher levels of abstractions and
support for explicit usage modes. Concurr. Comput. Pract. Eng. 21(8), 1087–1108 (2009)

2. Jha, S., et al.: Design and implementation of network performance aware applications using
SAGA and Cactus. In: IEEE Conference on e-Science 2007, Bangalore, pp. 143–150 (2007).
ISBN:978-0-7695-3064-2

3. Jha, S., et al.: Developing adaptive scientific applications with hard to predict runtime resource
requirements. In: Proceedings of TeraGrid 2008 Conference (Performance Challenge Award)

4. SAGA Web-Page. http://saga.cct.lsu.edu
5. Protocol Buffers. Google’s Data Interchange Format. http://code.google.com/p/protobuf
6. NIMBUS. http://workspace.globus.org/
7. http://www.loni.org/
8. http://opencloudconsortium.org/testbed/
9. Miceli, C., Miceli, M., Rodgriguez-Milla, B., Jha, S.: Understanding performance implications

of distributed data for data-intensive applications. Philos. Trans. R. Soc. Lond. Ser. A (2010)
10. Bégin, M.-E., Grids and clouds—evolution or revolution. https://edms.cern.ch/file/925013/3/

EGEE-Grid-Cloud.pdf (2008)
11. Borthaku, D., The Hadoop distributed file system: architecture and design. Retrieved from

http://hadoop.apache.org/common/ (2010)
12. Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS parameter sweep template:

User-level middleware for the Grid. Sci. Program. 8(3), 111–126 (2000)
13. Case, D.A. III, Cheatham, T.E., Darden, T.A., Gohlker, H., Luo, R. Jr., Merz, K.M., Onufriev,

A.V., Simmerling, C., Wang, B., Woods, R.: The amber biomolecular simulation programs.
J. Comput. Chem. 26, 1668–1688 (2005)

14. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: OSDI
’06: Proceedings of the 7th USENIX Symposium on Operating Systems Design and Imple-
mentation, p. 15. USENIX Association, Berkeley (2006)

15. Cloudstore. Cloudstore distributed file system (formerly, Kosmos file system). http://
kosmosfs.sourceforge.net/.

16. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Swami-
nathan, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

17. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the
cloud: the Montage example. In: SC ’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pp. 1–12. IEEE Press, New York (2008)

18. Nurmi, D., et al.: The Eucalyptus open-source cloud-computing system. October 2008
19. Evangelinos, C., Hill, C.N.: Cloud computing for parallel scientific HPC applications: fea-

sibility of running coupled atmosphere–ocean climate models on Amazon’s EC2. In: Cloud
Computing and its Applications (CCA-08) (2008)

20. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. ACM SIGOPS Oper. Syst.
Rev. 37(5), 43 (2003)

21. Gu, Y., Grossman, R.L.: Sector and Sphere: the design and implementation of a high-
performance data cloud. Philos. Trans. R. Soc. Lond. Ser. A 367, 2429–2445 (2009)

22. Jha, S., Katz, D.S., Luckow, A., Merzky, A., Stamou, K.: Understanding scientific applications
for cloud environments. In: Cloud Computing: Principles and Paradigms. Wiley, New York
(2010)

http://saga.cct.lsu.edu
http://code.google.com/p/protobuf
http://workspace.globus.org/
http://www.loni.org/
http://opencloudconsortium.org/testbed/
https://edms.cern.ch/file/925013/3/EGEE-Grid-Cloud.pdf
https://edms.cern.ch/file/925013/3/EGEE-Grid-Cloud.pdf
http://hadoop.apache.org/common/
http://kosmosfs.sourceforge.net/
http://kosmosfs.sourceforge.net/

9 Application-Level Interoperability Across Grids and Clouds 229

23. Kaiser, H., Merzky, A., Hirmer, S., Allen, G.: The SAGA C++ reference implementation.
In: Object-Oriented Programming, Systems, Languages and Applications (OOPSLA’06)—
Library-Centric Software Design (LCSD’06), Portland, OR, USA, 22–26 October 2006

24. Kim, H., el Khamra, Y., Jha, S., Parashar, M.: Exploring application and infrastructure adapta-
tions on hybrid grid–cloud infrastructure. In: First Workshop on Scientific Cloud Computing
(Science Cloud 2010). ACM, New York (2010)

25. Krishnan, S.: Programming Windows Azure. O’Reilly Media, New York (2010)
26. Lu, W., Jackson, J., Barga, R.: AzureBlast: A case study of developing science applications

on the cloud. In: First Workshop on Scientific Cloud Computing (Science Cloud 2010). ACM,
New York (2010)

27. Luckow, A., Jha, S., Merzky, A., Schnor, B., Kim, J.: Reliable replica exchange molecular
dynamics simulation in the Grid using SAGA CPR and Migol. In: Proceedings of UK e-
Science 2008 All Hands Meeting, Edinburgh, UK (2008)

28. Luckow, A., Lacinski, L., Jha, S.: Saga BigJob: an extensible and interoperable pilot-job ab-
straction for distributed applications and systems. In: The 10th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (2010)

29. Merzky, A., Stamou, K., Jha, S.: Application level interoperability between clouds and grids.
In: Workshops at the Grid and Pervasive Computing Conference, GPC ’09, May 2009,
pp. 143–150 (2009)

30. Miceli, C., Miceli, M., Jha, S., Kaiser, H., Merzky, A.: Programming abstractions for data
intensive computing on clouds and grids. In: 9th IEEE/ACM International Symposium on
Cloud, Cluster Computing and the Grid, CCGRID’09, May 2009, pp. 478–483 (2009)

31. Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel,
R., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26,
1781–1802 (2005)

32. Goodale, T., et al.: A simple API for grid applications (SAGA). http://www.ogf.org/
documents/GFD.90.pdf

http://www.ogf.org/documents/GFD.90.pdf
http://www.ogf.org/documents/GFD.90.pdf

Glossary

Cloud Computing a business model that provides utility Computing services
and/or SaaS services.

Grid Computing distributed computing that enables IT scalability and flexibility,
mainly focusing on large-scale problems.

Platform as a service Pay-per-Use for network-based delivery of a computing
platform and a related solution stack as a service.

Service Orientation a design paradigm that specifies the creation of automation
logic in the form of services. It is applied as a strategic goal in developing a
service-oriented architecture (SOA).

Software as a Service Pay-per-Use for network-based software applications
services.

Utility Computing Pay-per-Use for network-based Compute and Storage
services.

Virtualization a technique for hiding the physical characteristics of computing
resources from the way in which other systems, applications, or end users interact
with those resources.

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6, © Springer-Verlag London Limited 2011

231

http://dx.doi.org/10.1007/978-0-85729-049-6

Index

A
Abstractions, 201
Accounting, 157
Advance reservation, 144
Agenda, 144
Amazon EBS, 81
Amazon EC2, 56, 63, 76, 179, 186, 191
Amazon S3, 76, 81
Application resource tuple, 25
Azure, 202

B
Billing, 157
Broadband, 77, 78, 83

C
Capping, 148, 151
Carbon footprint, 144
Client-server, 9
Cloud computing, 6, 169
Condor, 75, 76, 80
Condor glideins, 81
Consolidation, 145
Contextualization, 75, 76
Coordinated resource sharing, 5
Corral, 81
COST action IC0805, 171
CPU idling, 147
CPU throttling, 145
Cyberinfrastructure, 72, 76

D
DAGMan, 75, 80
Data-compute affinity problem, 15
DRMAA, 66
DVFS, 145
Dynamic voltage and frequency scaling, 145

E
EGEE, 58
EGI, 171
Elasticity, 73
Electricity cost, 144
Energy, 144
Energy awareness, 144, 155
Energy consumption, 144
Energy efficiency, 61, 144
Energy saving, 144
Energy-aware cloud framework, 144, 153
Ensemble-based simulations, 202
Enterprise application workloads, 24
Epigenome, 77, 78, 84
Everything as a service, 163

F
Fault-tolerance, 173, 176, 178, 180
Federation, 58, 64

G
Globus toolkit, 66, 81, 177, 191
GlusterFS, 76
GPFS, 76
GPU, 170, 174, 188
Green open cloud, 144, 153
Green policies, 157
Green SLA, 157
Grid computing, 5
GridWay, 60, 66

H
Hardware abstraction layer, 11
Hybrid cloud, 56, 63
Hypervisor, 147

M. Cafaro, G. Aloisio (eds.), Grids, Clouds and Virtualization,
Computer Communications and Networks,
DOI 10.1007/978-0-85729-049-6, © Springer-Verlag London Limited 2011

233

http://dx.doi.org/10.1007/978-0-85729-049-6

234 Index

I
I/O device sharing bottlenecks on virtualized

server, 35
I/O device virtualization challenges, 24
I/O virtualization architecture description, 38
I/O virtualization architecture wish-list, 38
IaaS, 56, 57, 61, 66
Ibis, 174
Ibis programming models, 175
IbisDeploy, 178
Illusion of infinite resources, 73
Infrastructure as a service, 72
Interoperability, 9, 173, 200
Interoperation, 64
IPL, 174

J
JavaGAT, 177
Join-elect-leave (JEL), 175
Jorus, 186
Jungle Computing, 171
Jungle Computing System, 169, 171

L
Legacy applications, 74
Legacy codes, 174, 181
Live migration, 150
Lustre, 76, 82

M
Makespan, 82
Malleability, 173, 176, 178
MapReduce, 193
MapReduce,Dean, 13
MAQ, 78
Metacomputing, 2
Middleware, 3
Middleware independence, 173
Migration, 144
Montage, 77, 83
Multimedia content analysis, 181

N
NCSA, 72, 76
Network presence, 155
Network QoS evaluation on virtualized server,

33
Neuroinformatics, 183
NFS, 76
Nimbus context broker, 75, 88

O
OASIS, 9
OCCI, 63

On-demand, 73
Open grid forum, 9
Open science grid, 72
OpenNebula, 63, 65

P
Panasas, 76
Parallelization, 173
PBS, 76
Peer-to-peer, 9, 169, 180
Peer-to-peer middleware, 178
Pegasus, 75, 80
Pilot job, 59
Pinning, 148, 152
Platform as a service, 72, 89
Platform-as-service, 7
Power management, 154
Prediction algorithms, 157
Private cloud, 56, 60
Programming models, 201
Provenance, 74
Provisioning, 73
Proxy, 155
Public cloud, 56, 62, 64
PVFS, 76

R
Remote sensing, 184
Replica location service, 89
Reproducibility of scientific results, 74
RESERVOIR, 58
Resource independence, 173
Resource management system, 146
Resource manager, 154
Resource provisioning, 73, 145
Review of I/O virtualization techniques, 36
Robust connectivity, 173

S
SAGA, 201
Scale-out, 57, 63
Scaling, 3
Scheduler, 159
SDSC, 72
Semantic web, 182
Server consolidation, 60
Service level agreement, 9, 157
Service-oriented architecture, 72
SLA, 157
SmartSockets, 176
Software as a service, 72, 89
Software-as-service, 7
StratusLab, 58, 63

Index 235

Sun grid engine, 76
System virtualization, 24

T
Temperature-aware scheduling, 145
TeraGrid, 72

V
Virtual clusters, 75
Virtual CPU, 147
Virtual machine, 10, 144
Virtual machine energy cost, 148
Virtual machine monitor, 11
Virtual organizations, 5

Virtualization, 72, 74, 145, 180
Virtualization and application performance, 28
VM, 144

W
Web application, 144
Workload consolidation, 145

X
Xaas, 163
Xen, 147

Z
Zorilla, 178

	Cover
	Computer Communications and Networks
	Grids, Clouds and Virtualization
	Copyright
	Preface
	Acknowledgements
	Contents
	Contributors
	Grids, Clouds, and Virtualization
	Introduction
	A Bit of History
	Grids
	Clouds
	Virtualization
	Technologies
	The Economics
	The Economics in 2003
	The Economics in 2010

	Applications
	Conclusions
	References

	Quality of Service for I/O Workloads in Multicore Virtualized Servers
	Introduction
	Application Requirements for Performance Isolation on Shared Resources
	Prevalent Commodity Virtualization Technologies and QoS Controls for I/O Device Sharing
	Effect of Virtualization on Application Performance
	Evaluation of Network QoS Controls

	Review of I/O Virtualization Techniques
	Enhancement to I/O Virtualization Architecture
	Proposed I/O Virtualization Architecture Description
	Virtual-NIC
	Accessing Virtual-NIC
	QoS and Virtual-NIC
	Security and Virtual-NIC

	Network Packet Work-Flow Using the Virtualized I/O Architecture

	Evaluation of Proposed Architecture
	LQN Model for the Proposed Architecture

	Simulation and Results
	Conclusion
	Appendix
	References

	Architectures for Enhancing Grid Infrastructures with Cloud Computing
	Introduction
	Grid Infrastructure Enhancement with Cloud Computing
	Virtualization of Grid Sites
	IaaS Delivery in Grid Sites
	Cloud Scale-Out of Grid Sites
	Federation of Grids and Clouds
	Conclusions
	References

	Scientific Workflows in the Cloud
	Introduction
	Workflows in the Cloud
	Provisioning
	On-Demand
	Elasticity
	Legacy Applications
	Provenance and Reproducibility

	Deploying Workflows in the Cloud
	Virtual Clusters
	Resource Management
	Data Storage

	Case Study: Scientific Workflows on Amazon EC2
	Applications Tested
	Software
	Hardware
	Execution Environment
	Storage
	Performance Comparison
	Cost Analysis
	Resource Cost
	Storage Cost
	Transfer Cost

	Challenges
	Lack of Appropriate Storage Systems
	Relatively Slow Networks
	Lack of Tools

	Summary and Future Outlook
	References

	Auspice: Automatic Service Planning in Cloud/Grid Environments
	Introduction
	Our Vision with Auspice

	Metadata Framework
	Capturing Concept Derivation
	Enabling Fast Resource Identification

	Service Workflow Planning
	Planning with QoS Adaptivity
	Flexible Derived Data Caching

	Keyword Querying
	Keyword-Maximization Query Planning
	Planning Algorithm
	Relevance Ranking
	A Case Study

	Experimental Results
	QoS Handling
	Caching in a Cloud Environment

	Related Works
	Conclusion
	References

	Parameter Sweep Job Submission to Clouds
	Introduction
	Principles of Parameter Sweep Job Submission by P-GRADE Portal
	Principles of Parameter Sweep Job Submission to Various Grids by 3G Bridge
	Variants of Creating 3G Bridge Cloud Plug-Ins
	The Naive Solution
	Independent Cloud Resources with Local Job Managers
	Communicating Cloud Resources with Centralized Job Manager
	Independent Cloud Resources with Centralized Job Managers

	Performance Measurements
	Related Research
	Conclusion
	References

	Energy Aware Clouds
	Introduction
	Overview of Energy Aware Techniques for Clouds
	Investigating the Energy Consumption of Virtual Machines
	Experimental Scenario
	Virtual Machine Cost
	Migration Cost
	Capping and Pinning of VCPUs

	The Green Open Cloud
	The Green Open Cloud Architecture
	Network Presence
	Prediction Algorithms
	Green Policies

	Scenario and Experimental Results
	Experimental Scenario
	Results

	Conclusion
	References

	Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
	Introduction
	Jungle Computing Systems
	Jungle Computing: Requirements and Methodologies
	Requirements

	Ibis
	The Ibis High-Performance Programming System
	The Ibis Distributed Deployment System
	Ibis User Community
	Ibis versus the Requirements of Jungle Computing

	The Need for Jungle Computing in Scientific Practice
	Multimedia Content Analysis
	Semantic Web
	Neuroinformatics
	Remote Sensing
	A Generalized View

	Jungle Computing Experiments
	High-Performance Distributed Multimedia Analysis with Jorus
	Experiment 1: Fine-Grained Parallel Computing
	Experiment 2: User Transparent MMCA on GPU-Clusters
	Experiment 3: Jungle Computing at a World-Wide Scale

	Conclusions and Future Work
	References

	Application-Level Interoperability Across Grids and Clouds
	Introduction
	The Case for Application-Level Interoperability

	SAGA
	Interfacing SAGA to Grids and Clouds
	Sector-Sphere Adaptors: Design and Implementation
	SAGA Adaptor Overhead

	SAGA-Based MapReduce
	SAGA-MapReduce Implementation
	Enhancing SAGA-Based MapReduce Performance
	SAGA-MapReduce Set-Up

	Application Level Interoperability: Three-Levels
	Interoperability Types
	Type I: Application Interoperability via Adaptors
	Type II: Application Interoperability Using Programming Models
	Type III: Application Interoperability Using Different Programming Models for Concurrent Execution

	Experimental Setup

	Interoperability Experiments: Wordcount
	Type I ALI: Interoperability via Adaptors
	Results and Analysis

	Type II ALI: Application Performance Using SAGA-Based Sphere and MapReduce
	Experiment I: Varying Chunk Sizes
	Experiment II: Varying Workers

	Type III ALI: Interoperability Concurrency

	Interoperability Experiments: Ensemble of Biomolecular Simulations
	Scenario A: Tc for Workload for Different Resource Configurations
	Scenario B: Investigating Workload Distribution for a Given Tmax

	Future Work: Windows Azure
	Understanding Azure-System Abstractions
	Compute
	Storage

	Azure: Understanding the Applications
	Azure and Bio-EnMD
	Azure and MapReduce

	Assessing Azure-System: Abstractions and Applications

	Discussion and Conclusions
	References

	Glossary
	Index

